A platform for research: civil engineering, architecture and urbanism
Simultaneous calibration of hydrological models in geographical space
Hydrological models are usually calibrated for selected catchments individually using specific performance criteria. This procedure assumes that the catchments show individual behavior. As a consequence, the transfer of model parameters to other ungauged catchments is problematic. In this paper, the possibility of transferring part of the model parameters was investigated. Three different conceptual hydrological models were considered. The models were restructured by introducing a new parameter η which exclusively controls water balances. This parameter was considered as individual to each catchment. All other parameters, which mainly control the dynamics of the discharge (dynamical parameters), were considered for spatial transfer. Three hydrological models combined with three different performance measures were used in three different numerical experiments to investigate this transferability. The first numerical experiment, involving individual calibration of the models for 15 selected MOPEX catchments, showed that it is difficult to identify which catchments share common dynamical parameters. In the second numerical experiment, a common spatial calibration strategy was used. It was explicitly assumed that the catchments share common dynamical parameters. In the third numerical experiment, the common calibration methodology was applied for 96 catchments. Another set of 96 catchments was used to test the transfer of common dynamical parameters. The results show that even a large number of catchments share similar dynamical parameters. The performance is worse than those obtained by individual calibration, but the transfer to ungauged catchments remains possible. The performance of the common parameters in the second experiment was better than in the third, indicating that the selection of the catchments for common calibration is important.
Simultaneous calibration of hydrological models in geographical space
Hydrological models are usually calibrated for selected catchments individually using specific performance criteria. This procedure assumes that the catchments show individual behavior. As a consequence, the transfer of model parameters to other ungauged catchments is problematic. In this paper, the possibility of transferring part of the model parameters was investigated. Three different conceptual hydrological models were considered. The models were restructured by introducing a new parameter η which exclusively controls water balances. This parameter was considered as individual to each catchment. All other parameters, which mainly control the dynamics of the discharge (dynamical parameters), were considered for spatial transfer. Three hydrological models combined with three different performance measures were used in three different numerical experiments to investigate this transferability. The first numerical experiment, involving individual calibration of the models for 15 selected MOPEX catchments, showed that it is difficult to identify which catchments share common dynamical parameters. In the second numerical experiment, a common spatial calibration strategy was used. It was explicitly assumed that the catchments share common dynamical parameters. In the third numerical experiment, the common calibration methodology was applied for 96 catchments. Another set of 96 catchments was used to test the transfer of common dynamical parameters. The results show that even a large number of catchments share similar dynamical parameters. The performance is worse than those obtained by individual calibration, but the transfer to ungauged catchments remains possible. The performance of the common parameters in the second experiment was better than in the third, indicating that the selection of the catchments for common calibration is important.
Simultaneous calibration of hydrological models in geographical space
Bárdossy, András (author) / Huang, Yingchun (author) / Wagener, Thorsten (author) / Universität Stuttgart (host institution)
2016
Miscellaneous
Electronic Resource
English
DDC:
624
Calibration of hydrological models on hydrologically unusual events
British Library Online Contents | 2012
|Global Calibration of Distributed Hydrological Models for Large-Scale Applications
Online Contents | 2013
|Geographical Information Systems in Hydrological Evaluation and Urban Planning
British Library Conference Proceedings | 1998
|Global Calibration of Distributed Hydrological Models for Large-Scale Applications
British Library Online Contents | 2013
|