A platform for research: civil engineering, architecture and urbanism
Spatiotemporal Analysis of Future Precipitation Changes in the Huaihe River Basin Based on the NEX-GDDP-CMIP6 Dataset and Monitoring Data
This research analyzes extreme precipitation events in the Huaihe River Basin in China, a densely populated region with a history of human settlements and agricultural activities. This study aims to explore the impact of extreme precipitation index changes and provide decision-making suggestions for flood early warning and agricultural development in the Huaihe River Basin. The study utilizes the NEX-GDDP-CMIP6 climate model dataset and daily value dataset (V3.0) from China’s national surface weather stations to investigate temporal and spatial changes in the extreme precipitation indices from 1960 to 2014 and future projections. At the same time, this study adopts the RclimDex model, Taylor diagram, and Sen+Mann–Kendall trend analysis research methods to analyze the data. The results reveal a slight increase in extreme precipitation indices from the northwest to southeast within the basin, except for the CDD, which shows a decreasing trend. Regarding the spatial variation, the future increase in extreme precipitation in the Huaihe River Basin shows a spatial variation characteristic that decreases from the northwest to southeast. These findings suggest that extreme precipitation events are intensifying in the region. Understanding these trends and their implications is vital for adaptation strategy planning and mitigating the risks associated with extreme precipitation events in the Huaihe River Basin.
Spatiotemporal Analysis of Future Precipitation Changes in the Huaihe River Basin Based on the NEX-GDDP-CMIP6 Dataset and Monitoring Data
This research analyzes extreme precipitation events in the Huaihe River Basin in China, a densely populated region with a history of human settlements and agricultural activities. This study aims to explore the impact of extreme precipitation index changes and provide decision-making suggestions for flood early warning and agricultural development in the Huaihe River Basin. The study utilizes the NEX-GDDP-CMIP6 climate model dataset and daily value dataset (V3.0) from China’s national surface weather stations to investigate temporal and spatial changes in the extreme precipitation indices from 1960 to 2014 and future projections. At the same time, this study adopts the RclimDex model, Taylor diagram, and Sen+Mann–Kendall trend analysis research methods to analyze the data. The results reveal a slight increase in extreme precipitation indices from the northwest to southeast within the basin, except for the CDD, which shows a decreasing trend. Regarding the spatial variation, the future increase in extreme precipitation in the Huaihe River Basin shows a spatial variation characteristic that decreases from the northwest to southeast. These findings suggest that extreme precipitation events are intensifying in the region. Understanding these trends and their implications is vital for adaptation strategy planning and mitigating the risks associated with extreme precipitation events in the Huaihe River Basin.
Spatiotemporal Analysis of Future Precipitation Changes in the Huaihe River Basin Based on the NEX-GDDP-CMIP6 Dataset and Monitoring Data
Min Tong (author) / Leilei Li (author) / Zhi Li (author) / Zhihui Tian (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Regional Frequency Analysis of Extreme Precipitation in the Huaihe River Basin, China
British Library Conference Proceedings | 2013
|