A platform for research: civil engineering, architecture and urbanism
Analysis of existing technological solutions of foam glass production
Introduction. Foam glass is often represented as a thermal insulation, a sound insulation and a sound absorbing material in the form of blocks (slabs), granules and shaped products. Cellular glass is characterized by durability, incombustibility, biostability and sufficient strength. Among the main properties, it is also possible to mark out low thermal conductivity of foam glass which makes it a promising thermal insulation material. Materials and methods. A complex of general scientific logical methods of research is used in this work. The complex is based on a theoretical analysis of technological solutions for the foam glass production described in the scientific and technical literature, patents as well as scientific papers. Results. Possible classifications of foam glass products are marked out; an authors’ classification is suggested depending on the field of foam glass application. The main foam glass properties are considered. The advantages and disadvantages of the foam glass charge mixture are identified in the course of analysis of possible raw components as well as their influence on the foam glass production technology and properties of the finished product are examined. Comparison of blowing agents is conducted depending on the foaming temperature and pore character that affect the field of material application. A comparative table of the foam glass production technologies is proposed, the merits and demerits of each technological solution are revealed as well as variants of the obtained products and needed equipment are considered. Conclusions. Allowing for the consumer demand for thermal insulation materials and strict requirements for them, it is most expedient to produce granulated foam glass with a wet method. The advantages of this technology are the accelerated grinding of glass in liquid media, lowering the foaming temperature, expanding the temperature range of structure formation, eliminating dust emission that permits reducing the finished product cost.
Analysis of existing technological solutions of foam glass production
Introduction. Foam glass is often represented as a thermal insulation, a sound insulation and a sound absorbing material in the form of blocks (slabs), granules and shaped products. Cellular glass is characterized by durability, incombustibility, biostability and sufficient strength. Among the main properties, it is also possible to mark out low thermal conductivity of foam glass which makes it a promising thermal insulation material. Materials and methods. A complex of general scientific logical methods of research is used in this work. The complex is based on a theoretical analysis of technological solutions for the foam glass production described in the scientific and technical literature, patents as well as scientific papers. Results. Possible classifications of foam glass products are marked out; an authors’ classification is suggested depending on the field of foam glass application. The main foam glass properties are considered. The advantages and disadvantages of the foam glass charge mixture are identified in the course of analysis of possible raw components as well as their influence on the foam glass production technology and properties of the finished product are examined. Comparison of blowing agents is conducted depending on the foaming temperature and pore character that affect the field of material application. A comparative table of the foam glass production technologies is proposed, the merits and demerits of each technological solution are revealed as well as variants of the obtained products and needed equipment are considered. Conclusions. Allowing for the consumer demand for thermal insulation materials and strict requirements for them, it is most expedient to produce granulated foam glass with a wet method. The advantages of this technology are the accelerated grinding of glass in liquid media, lowering the foaming temperature, expanding the temperature range of structure formation, eliminating dust emission that permits reducing the finished product cost.
Analysis of existing technological solutions of foam glass production
Georgiy V. Sopegin (author) / Diana Ch. Rustamova (author) / Sergey M. Fedoseev (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
ANALYSIS OF EXISTING TECHNOLOGICAL SOLUTIONS OF 3D-PRINTING IN CONSTRUCTION
DOAJ | 2018
|Optimization of Technological Solutions for Underground Space Construction of Existing Buildings
Springer Verlag | 2022
|Foam glass - New possibilities of production
Tema Archive | 1993
|A Technological Analysis Applied to Existing Building Insulated with Straw
Tema Archive | 2014
|A Technological Analysis Applied to Existing Building Insulated with Straw
British Library Online Contents | 2014
|