A platform for research: civil engineering, architecture and urbanism
Urban environment and cognitive and motor function in children from four European birth cohorts
Background: The urban environment may influence neurodevelopment from conception onwards, but there is no evaluation of the impact of multiple groups of exposures simultaneously. We investigated the association between early-life urban environment and cognitive and motor function in children. Methods: We used data from 5403 mother–child pairs from four population-based birth-cohorts (UK, France, Spain, and Greece). We estimated thirteen urban home exposures during pregnancy and childhood, including: built environment, natural spaces, and air pollution. Verbal, non-verbal, gross motor, and fine motor functions were assessed using validated tests at five years old. We ran adjusted multi-exposure models using the Deletion-Substitution-Addition algorithm. Results: Higher greenness exposure within 300 m during pregnancy was associated with higher verbal abilities (1.5 points (95% confidence interval 0.4, 2.7) per 0.20 unit increase in greenness). Higher connectivity density within 100 m and land use diversity during pregnancy were related to lower verbal abilities. Childhood exposure to PM2.5 mediated 74% of the association between greenness during childhood and verbal abilities. Higher exposure to PM2.5 during pregnancy was related to lower fine motor function (-1.2 points (-2.1, -0.4) per 3.2 μg/m3 increase in PM2.5). No associations were found with non-verbal abilities and gross motor function. Discussion: This study suggests that built environment, greenness, and air pollution may impact child cognitive and motor function at five years old. This study adds evidence that well-designed urban planning may benefit children’s cognitive and motor development.
Urban environment and cognitive and motor function in children from four European birth cohorts
Background: The urban environment may influence neurodevelopment from conception onwards, but there is no evaluation of the impact of multiple groups of exposures simultaneously. We investigated the association between early-life urban environment and cognitive and motor function in children. Methods: We used data from 5403 mother–child pairs from four population-based birth-cohorts (UK, France, Spain, and Greece). We estimated thirteen urban home exposures during pregnancy and childhood, including: built environment, natural spaces, and air pollution. Verbal, non-verbal, gross motor, and fine motor functions were assessed using validated tests at five years old. We ran adjusted multi-exposure models using the Deletion-Substitution-Addition algorithm. Results: Higher greenness exposure within 300 m during pregnancy was associated with higher verbal abilities (1.5 points (95% confidence interval 0.4, 2.7) per 0.20 unit increase in greenness). Higher connectivity density within 100 m and land use diversity during pregnancy were related to lower verbal abilities. Childhood exposure to PM2.5 mediated 74% of the association between greenness during childhood and verbal abilities. Higher exposure to PM2.5 during pregnancy was related to lower fine motor function (-1.2 points (-2.1, -0.4) per 3.2 μg/m3 increase in PM2.5). No associations were found with non-verbal abilities and gross motor function. Discussion: This study suggests that built environment, greenness, and air pollution may impact child cognitive and motor function at five years old. This study adds evidence that well-designed urban planning may benefit children’s cognitive and motor development.
Urban environment and cognitive and motor function in children from four European birth cohorts
Anne-Claire Binter (author) / Jonathan Y. Bernard (author) / Mark Mon-Williams (author) / Ainara Andiarena (author) / Llúcia González-Safont (author) / Marina Vafeiadi (author) / Johanna Lepeule (author) / Raquel Soler-Blasco (author) / Lucia Alonso (author) / Mariza Kampouri (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Exposure to natural environments during pregnancy and birth outcomes in 11 European birth cohorts
DOAJ | 2022
|