A platform for research: civil engineering, architecture and urbanism
Local and Application-Specific Geodemographics for Data-Led Urban Decision Making
This work seeks to introduce improvements to the traditional variable selection procedures employed in the development of geodemographic classifications. It presents a proposal for shifting from a traditional approach for generating general-purpose one-size-fits-all geodemographic classifications to application-specific classifications. This proposal addresses the recent scepticism towards the utility of general-purpose applications by employing supervised machine learning techniques in order to identify contextually relevant input variables from which to develop geodemographic classifications with increased discriminatory power. A framework introducing such techniques in the variable selection phase of geodemographic classification development is presented via a practical use-case that is focused on generating a geodemographic classification with an increased capacity for discriminating the propensity for Library use in the UK city of Leeds. Two local classifications are generated for the city, one a general-purpose classification, and the other, an application-specific classification incorporating supervised Feature Selection methods in the selection of input variables. The discriminatory power of each classification is evaluated and compared, with the result successfully demonstrating the capacity for the application-specific approach to generate a more contextually relevant result, and thus underpins increasingly targeted public policy decision making, particularly in the context of urban planning.
Local and Application-Specific Geodemographics for Data-Led Urban Decision Making
This work seeks to introduce improvements to the traditional variable selection procedures employed in the development of geodemographic classifications. It presents a proposal for shifting from a traditional approach for generating general-purpose one-size-fits-all geodemographic classifications to application-specific classifications. This proposal addresses the recent scepticism towards the utility of general-purpose applications by employing supervised machine learning techniques in order to identify contextually relevant input variables from which to develop geodemographic classifications with increased discriminatory power. A framework introducing such techniques in the variable selection phase of geodemographic classification development is presented via a practical use-case that is focused on generating a geodemographic classification with an increased capacity for discriminating the propensity for Library use in the UK city of Leeds. Two local classifications are generated for the city, one a general-purpose classification, and the other, an application-specific classification incorporating supervised Feature Selection methods in the selection of input variables. The discriminatory power of each classification is evaluated and compared, with the result successfully demonstrating the capacity for the application-specific approach to generate a more contextually relevant result, and thus underpins increasingly targeted public policy decision making, particularly in the context of urban planning.
Local and Application-Specific Geodemographics for Data-Led Urban Decision Making
Amanda Otley (author) / Michelle Morris (author) / Andy Newing (author) / Mark Birkin (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
EUROPEAN GEODEMOGRAPHICS CONFERENCE REPORT
Online Contents | 2009
The enhancement of spatial microsimulation models using geodemographics
Online Contents | 2011
|The enhancement of spatial microsimulation models using geodemographics
Online Contents | 2011
|