A platform for research: civil engineering, architecture and urbanism
Fuzzy Efficient Energy Smart Home Management System for Renewable Energy Resources
This article provides a fuzzy expert system for efficient energy smart home management systems (FES-EESHM), demand management, renewable energy management, energy storage, and microgrids. The suggested fuzzy expert framework is utilized to simplify designing smart microgrids with storage systems, renewable sources, and controllable loads on resources. Further, the fuzzy expert framework enhances energy and storage to utilize renewable energy and maximize the microgrid’s financial gain. Moreover, the fuzzy expert system utilizes insolation, electricity price, wind speed, and load energy controllably and unregulated as input variables to enable energy management. It uses input variables including insolation, electrical quality, wind, and the power of uncontrollable and controllable loads to allow energy management. Furthermore, these input data can be calculated, imported, or predicted directly via grid measurement using any prediction process. In this paper, the input variables are fuzzified, a series of rules are specified by the expert system, and the output is de-fuzzified. The findings of the expert program are discussed to explain how to handle microgrid power consumption and production. However, the decisions on energy generated, controllable loads, and own consumption are based on three outputs. The first production is for processing, selling, or consuming the energy produced. The second output is used for controlling the load. The third result shows how to produce for prosumer’s use. The expert method can be checked via the hourly input of variable values. Finally, to confirm the findings, the method suggested is compared to other available approaches.
Fuzzy Efficient Energy Smart Home Management System for Renewable Energy Resources
This article provides a fuzzy expert system for efficient energy smart home management systems (FES-EESHM), demand management, renewable energy management, energy storage, and microgrids. The suggested fuzzy expert framework is utilized to simplify designing smart microgrids with storage systems, renewable sources, and controllable loads on resources. Further, the fuzzy expert framework enhances energy and storage to utilize renewable energy and maximize the microgrid’s financial gain. Moreover, the fuzzy expert system utilizes insolation, electricity price, wind speed, and load energy controllably and unregulated as input variables to enable energy management. It uses input variables including insolation, electrical quality, wind, and the power of uncontrollable and controllable loads to allow energy management. Furthermore, these input data can be calculated, imported, or predicted directly via grid measurement using any prediction process. In this paper, the input variables are fuzzified, a series of rules are specified by the expert system, and the output is de-fuzzified. The findings of the expert program are discussed to explain how to handle microgrid power consumption and production. However, the decisions on energy generated, controllable loads, and own consumption are based on three outputs. The first production is for processing, selling, or consuming the energy produced. The second output is used for controlling the load. The third result shows how to produce for prosumer’s use. The expert method can be checked via the hourly input of variable values. Finally, to confirm the findings, the method suggested is compared to other available approaches.
Fuzzy Efficient Energy Smart Home Management System for Renewable Energy Resources
Ronggang Zhang (author) / Sathishkumar V E (author) / R. Dinesh Jackson Samuel (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Hybridized Intelligent Home Renewable Energy Management System for Smart Grids
DOAJ | 2020
|Smart home energy management including renewable sources: A QoE-driven Approach
BASE | 2018
|Smart home energy management system – a review
Taylor & Francis Verlag | 2022
|