A platform for research: civil engineering, architecture and urbanism
Crack Initiation Behaviors of Granite Specimens Containing Crossing-Double-Flaws with Different Lengths under Uniaxial Loading
Crack initiation is an important stage in the failure process of rock masses. In this paper, crack initiation behaviors (crack initiation model, crack initiation location, crack initiation angle, and crack initiation stress) of granite specimens containing crossing-double-flaws with different lengths were investigated using PFC2D software. Crack initiation models were all tensile wing cracks, which did not exactly initiate from the main flaw with a length of 30 mm. They can initiate from the secondary flaw with a length 20 mm at α of 30° (included angle between main flaw and horizontal direction) and β of 90° (included angle between main and secondary flaws) and from main and secondary flaws at α of 30° and β of 60°. These were mainly induced by the superposition of stress fields around the main and secondary flaws as β varied from 0° to 90°, especially the tensile force concentration zones superposition. The tensile forces concentration zone around flaw shrank towards flaw tips with the increase of flaw’s inclinations measured horizontally. Under stress field superposition effects, the crack initiation stress decreased firstly and then increased with β at α of 30° and 45°. Crack initiation locations were close to flaw tips but not restricted to them. The distances between crack initiation locations and flaw tips, and the crack initiation angles depended on the flaw where first macrocracks initiated from. Microdisplacement field distributions of granite specimens to reveal the mesomechanism of crack initiation behaviors were discussed.
Crack Initiation Behaviors of Granite Specimens Containing Crossing-Double-Flaws with Different Lengths under Uniaxial Loading
Crack initiation is an important stage in the failure process of rock masses. In this paper, crack initiation behaviors (crack initiation model, crack initiation location, crack initiation angle, and crack initiation stress) of granite specimens containing crossing-double-flaws with different lengths were investigated using PFC2D software. Crack initiation models were all tensile wing cracks, which did not exactly initiate from the main flaw with a length of 30 mm. They can initiate from the secondary flaw with a length 20 mm at α of 30° (included angle between main flaw and horizontal direction) and β of 90° (included angle between main and secondary flaws) and from main and secondary flaws at α of 30° and β of 60°. These were mainly induced by the superposition of stress fields around the main and secondary flaws as β varied from 0° to 90°, especially the tensile force concentration zones superposition. The tensile forces concentration zone around flaw shrank towards flaw tips with the increase of flaw’s inclinations measured horizontally. Under stress field superposition effects, the crack initiation stress decreased firstly and then increased with β at α of 30° and 45°. Crack initiation locations were close to flaw tips but not restricted to them. The distances between crack initiation locations and flaw tips, and the crack initiation angles depended on the flaw where first macrocracks initiated from. Microdisplacement field distributions of granite specimens to reveal the mesomechanism of crack initiation behaviors were discussed.
Crack Initiation Behaviors of Granite Specimens Containing Crossing-Double-Flaws with Different Lengths under Uniaxial Loading
Haiyang Pan (author) / Dawei Yin (author) / Ning Jiang (author) / Zhiguo Xia (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Crack Evolution and Mechanical Behavior of Granite with Topological Flaws Under Uniaxial Compression
Springer Verlag | 2025
|Crack Evolution and Mechanical Behavior of Granite with Topological Flaws Under Uniaxial Compression
Springer Verlag | 2025
|Crack initiation of granite under uniaxial compression tests: A comparison study
DOAJ | 2020
|Investigation of creep behaviours of gypsum specimens with flaws under different uniaxial loads
DOAJ | 2018
|Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression
British Library Online Contents | 2010
|