A platform for research: civil engineering, architecture and urbanism
Bentonite-Clay/CNT-Based Nano Adsorbent for Textile Wastewater Treatment: Optimization of Process Parameters
Dyes are the most carcinogenic organic compounds that are discarded by most of the textile industries without any prior treatment, which is harmful for the environment. This study aims to develop a bentonite-clay/carbon-nanotube (CNT)-based adsorbent to treat textile wastewater for water sustainability. The preliminary and post-characterization of adsorbent involves scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) and energy-dispersive X-ray (EDX) analysis to determine the changes in surface morphology, functional group, and surface area of the adsorbent. Linear and nonlinear isotherms and kinetic studies were performed to explore the sorption mechanism. The results show that the nonlinear form of the Langmuir isotherm best fits adsorption with a qmax of 550 mg/g. The adsorption followed the nonlinear pseudo-first-order kinetics, favoring chemisorption with R2 ≈ 1 and X2 = 0.22. Maximum dye removal (89.9%) was achieved under the optimum conditions of pH 3, an adsorbent dose of 100 mg, and a contact time of 120 min, with an initial COD concentration of 1140 mgL−1. This study has demonstrated the successful application of a bentonite-clay/CNT-based adsorbent on textile wastewater treatment.
Bentonite-Clay/CNT-Based Nano Adsorbent for Textile Wastewater Treatment: Optimization of Process Parameters
Dyes are the most carcinogenic organic compounds that are discarded by most of the textile industries without any prior treatment, which is harmful for the environment. This study aims to develop a bentonite-clay/carbon-nanotube (CNT)-based adsorbent to treat textile wastewater for water sustainability. The preliminary and post-characterization of adsorbent involves scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) and energy-dispersive X-ray (EDX) analysis to determine the changes in surface morphology, functional group, and surface area of the adsorbent. Linear and nonlinear isotherms and kinetic studies were performed to explore the sorption mechanism. The results show that the nonlinear form of the Langmuir isotherm best fits adsorption with a qmax of 550 mg/g. The adsorption followed the nonlinear pseudo-first-order kinetics, favoring chemisorption with R2 ≈ 1 and X2 = 0.22. Maximum dye removal (89.9%) was achieved under the optimum conditions of pH 3, an adsorbent dose of 100 mg, and a contact time of 120 min, with an initial COD concentration of 1140 mgL−1. This study has demonstrated the successful application of a bentonite-clay/CNT-based adsorbent on textile wastewater treatment.
Bentonite-Clay/CNT-Based Nano Adsorbent for Textile Wastewater Treatment: Optimization of Process Parameters
Tayyaba Jamil (author) / Saima Yasin (author) / Naveed Ramzan (author) / Hafiz Muhammad Zaheer Aslam (author) / Amir Ikhlaq (author) / Abdul Mannan Zafar (author) / Ashraf Aly Hassan (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment
British Library Online Contents | 2012
|Modification of Brazilian Bentonite Clay for Use Nano-Biocomposites
British Library Online Contents | 2012
|