A platform for research: civil engineering, architecture and urbanism
Kinetics of oil palm empty fruit bunch fiber pyrolysis
This work explores the kinetics of producing sustainable hydrocarbons from oil palm empty fruit bunch (EFB) fiber. A one-step global model was used to study the dynamics of the EFB fiber using the Coats and Redfern (CR) model-fitting kinetics technique. The non-isothermal iso-conversional methods of Friedman (FD), Kissinger-Akahira-Sunose (KAS), and Flynn-Wall-Ozawa (FWO) were also examined. Different heating rates (5, 10, and 15°C/min) were used for the thermogravimetric analysis. The best-fitting equations were used to fit the CR model and determine the thermodynamic parameters. The reaction is diffusion regulated by nucleation and nuclei growth models, according to the Zhuravlev-Lasokin-Tempelman model, which produced the highest regression value and the best acceptable fit. Out of all the model-free methods, FD showed the greatest apparent activation energy levels when compared to the iso-conversion methods KAS and FWO. The changes in entropy (−123 to 135), Gibbs free energy (150–156 kJ/mol), and activation enthalpy (63–71 kJ/mol) were computed using the best-fitting model. The maximum apparent activation energy was found using the FD iso-conversion technique.
Kinetics of oil palm empty fruit bunch fiber pyrolysis
This work explores the kinetics of producing sustainable hydrocarbons from oil palm empty fruit bunch (EFB) fiber. A one-step global model was used to study the dynamics of the EFB fiber using the Coats and Redfern (CR) model-fitting kinetics technique. The non-isothermal iso-conversional methods of Friedman (FD), Kissinger-Akahira-Sunose (KAS), and Flynn-Wall-Ozawa (FWO) were also examined. Different heating rates (5, 10, and 15°C/min) were used for the thermogravimetric analysis. The best-fitting equations were used to fit the CR model and determine the thermodynamic parameters. The reaction is diffusion regulated by nucleation and nuclei growth models, according to the Zhuravlev-Lasokin-Tempelman model, which produced the highest regression value and the best acceptable fit. Out of all the model-free methods, FD showed the greatest apparent activation energy levels when compared to the iso-conversion methods KAS and FWO. The changes in entropy (−123 to 135), Gibbs free energy (150–156 kJ/mol), and activation enthalpy (63–71 kJ/mol) were computed using the best-fitting model. The maximum apparent activation energy was found using the FD iso-conversion technique.
Kinetics of oil palm empty fruit bunch fiber pyrolysis
Bashar Abdullahi Hadi (author) / Abdullahi Muhammad Sokoto (author) / Aminu Bayawa Muhammad (author) / Yahaya Alhassan (author) / Chika Muhammad (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Oil Palm Empty Fruit Bunch Filled Polypropylene Composites
British Library Online Contents | 2004
|Separation of Vanillin from Oil Palm Empty Fruit Bunch Lignin
Online Contents | 2008
|A review on oil palm empty fruit bunch fiber reinforced polymer composite materials
British Library Online Contents | 2010
|Characterization of Oil Palm Empty Fruit Bunch (OPEFB) Fiber Reinforced PVC/ENR Blend
British Library Online Contents | 2008
|