A platform for research: civil engineering, architecture and urbanism
Geospatial Estimation of above Ground Forest Biomass in the Sierra Madre Occidental in the State of Durango, Mexico
Combined use of new geospatial techniques and non-parametric multivariate statistical methods enables monitoring and quantification of the biomass of large areas of forest ecosystems with acceptable reliability. The main objective of the present study was to estimate the aboveground forest biomass (AGB) in the Sierra Madre Occidental (SMO) in the state of Durango, Mexico, using the M5 model tree (M5P) technique and the analysis of medium-resolution satellite-based multi-spectral data, and field data collected from a network of 201 permanent forest growth and soil research sites (SPIFyS). Research plots were installed by systematic sampling throughout the study area in 2011. The digital levels of the images were converted to apparent reflectance (ToA) and surface reflectance (SR). The M5P technique that constructs tree-based piecewise linear models was used. The fitted model with SR and tree abundance by species group as predictive variables (ASG) explained 73% of the observed AGB variance (the root mean squared error (RMSE) = 39.40 Mg·ha−1). The variables that best discriminated the AGB, in order of decreasing importance, were the normalized difference vegetation index (NDVI), tree abundance of other broadleaves species (OB), Band 4 of Landsat 5 TM (Thematic Mapper) satellite and tree abundance of pines (Pinus). The results demonstrate the potential usefulness of the M5P method for estimating AGB based in the surface reflectance values (SR).
Geospatial Estimation of above Ground Forest Biomass in the Sierra Madre Occidental in the State of Durango, Mexico
Combined use of new geospatial techniques and non-parametric multivariate statistical methods enables monitoring and quantification of the biomass of large areas of forest ecosystems with acceptable reliability. The main objective of the present study was to estimate the aboveground forest biomass (AGB) in the Sierra Madre Occidental (SMO) in the state of Durango, Mexico, using the M5 model tree (M5P) technique and the analysis of medium-resolution satellite-based multi-spectral data, and field data collected from a network of 201 permanent forest growth and soil research sites (SPIFyS). Research plots were installed by systematic sampling throughout the study area in 2011. The digital levels of the images were converted to apparent reflectance (ToA) and surface reflectance (SR). The M5P technique that constructs tree-based piecewise linear models was used. The fitted model with SR and tree abundance by species group as predictive variables (ASG) explained 73% of the observed AGB variance (the root mean squared error (RMSE) = 39.40 Mg·ha−1). The variables that best discriminated the AGB, in order of decreasing importance, were the normalized difference vegetation index (NDVI), tree abundance of other broadleaves species (OB), Band 4 of Landsat 5 TM (Thematic Mapper) satellite and tree abundance of pines (Pinus). The results demonstrate the potential usefulness of the M5P method for estimating AGB based in the surface reflectance values (SR).
Geospatial Estimation of above Ground Forest Biomass in the Sierra Madre Occidental in the State of Durango, Mexico
Pablito M. López-Serrano (author) / Carlos A. López Sánchez (author) / Raúl Solís-Moreno (author) / José J. Corral-Rivas (author)
2016
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Patterns of Density and Production in the Community Forests of the Sierra Madre Occidental, Mexico
DOAJ | 2020
|