A platform for research: civil engineering, architecture and urbanism
Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties
In the recent decades, effects of blast loads on natural and man-made structures have gained considerable attention due to increase in threat from various man-made activities. Site-specific empirical relationships for calculation of blast-induced vibration parameters like peak particle velocity (PPV) and peak particle displacement (PPD) are commonly used for estimation of blast loads in design. However, these relationships are not able to consider the variation in rock parameters and uncertainty of in situ conditions. In this paper, a total of 1089 published blast data of various researchers in different rock sites have been collected and used to propose generalized empirical model for PPV by considering the effects of rock parameters like unit weight, rock quality designation (RQD), geological strength index (GSI), and uniaxial compressive strength (UCS). The proposed PPV model has a good correlation coefficient and hence it can be directly used in prediction of blast-induced vibrations in rocks. Standard errors and coefficient of correlations of the predicted blast-induced vibration parameters are obtained with respect to the observed field data. The proposed empirical model for PPV has also been compared with the empirical models available for blast vibrations predictions given by other researchers and found to be in good agreement with specific cases.
Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties
In the recent decades, effects of blast loads on natural and man-made structures have gained considerable attention due to increase in threat from various man-made activities. Site-specific empirical relationships for calculation of blast-induced vibration parameters like peak particle velocity (PPV) and peak particle displacement (PPD) are commonly used for estimation of blast loads in design. However, these relationships are not able to consider the variation in rock parameters and uncertainty of in situ conditions. In this paper, a total of 1089 published blast data of various researchers in different rock sites have been collected and used to propose generalized empirical model for PPV by considering the effects of rock parameters like unit weight, rock quality designation (RQD), geological strength index (GSI), and uniaxial compressive strength (UCS). The proposed PPV model has a good correlation coefficient and hence it can be directly used in prediction of blast-induced vibrations in rocks. Standard errors and coefficient of correlations of the predicted blast-induced vibration parameters are obtained with respect to the observed field data. The proposed empirical model for PPV has also been compared with the empirical models available for blast vibrations predictions given by other researchers and found to be in good agreement with specific cases.
Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties
Ranjan Kumar (author) / Deepankar Choudhury (author) / Kapilesh Bhargava (author)
2016
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Elsevier | 2016
|Evaluation of blast-induced ground vibration predictors
Online Contents | 2007
|Evaluation of blast-induced ground vibration predictors
Elsevier | 2006
|Evaluation of blast-induced ground vibration predictors
British Library Online Contents | 2007
|