A platform for research: civil engineering, architecture and urbanism
Hydrogen Adsorption in Porous Geological Materials: A Review
The paper adopts an interdisciplinary approach to comprehensively review the current knowledge in the field of porous geological materials for hydrogen adsorption. It focuses on detailed analyses of the adsorption characteristics of hydrogen in clay minerals, shale, and coal, considering the effect of factors such as pore structure and competitive adsorption with multiple gases. The fundamental principles underlying physically controlled hydrogen storage mechanisms in these porous matrices are explored. The findings show that the adsorption of hydrogen in clay minerals, shale, and coal is predominantly governed by physical adsorption that follows the Langmuir adsorption equation. The adsorption capacity decreases with increasing temperature and increases with increasing pressure. The presence of carbon dioxide and methane affects the adsorption of hydrogen. Pore characteristics—including specific surface area, micropore volume, and pore size—in clay minerals, shale, and coal are crucial factors that influence the adsorption capacity of hydrogen. Micropores play a significant role, allowing hydrogen molecules to interact with multiple pore walls, leading to increased adsorption enthalpy. This comprehensive review provides insights into the hydrogen storage potential of porous geological materials, laying the groundwork for further research and the development of efficient and sustainable hydrogen storage solutions.
Hydrogen Adsorption in Porous Geological Materials: A Review
The paper adopts an interdisciplinary approach to comprehensively review the current knowledge in the field of porous geological materials for hydrogen adsorption. It focuses on detailed analyses of the adsorption characteristics of hydrogen in clay minerals, shale, and coal, considering the effect of factors such as pore structure and competitive adsorption with multiple gases. The fundamental principles underlying physically controlled hydrogen storage mechanisms in these porous matrices are explored. The findings show that the adsorption of hydrogen in clay minerals, shale, and coal is predominantly governed by physical adsorption that follows the Langmuir adsorption equation. The adsorption capacity decreases with increasing temperature and increases with increasing pressure. The presence of carbon dioxide and methane affects the adsorption of hydrogen. Pore characteristics—including specific surface area, micropore volume, and pore size—in clay minerals, shale, and coal are crucial factors that influence the adsorption capacity of hydrogen. Micropores play a significant role, allowing hydrogen molecules to interact with multiple pore walls, leading to increased adsorption enthalpy. This comprehensive review provides insights into the hydrogen storage potential of porous geological materials, laying the groundwork for further research and the development of efficient and sustainable hydrogen storage solutions.
Hydrogen Adsorption in Porous Geological Materials: A Review
Lu Wang (author) / Zhijun Jin (author) / Xiaowei Huang (author) / Runchao Liu (author) / Yutong Su (author) / Qian Zhang (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Hydrogen Adsorption in Carbon Materials
British Library Online Contents | 1999
|Variability of Geological Materials
British Library Conference Proceedings | 1989
|Hydrogen in porous silicon - A review
British Library Online Contents | 2013
|