A platform for research: civil engineering, architecture and urbanism
Machine learning methods for crop yield prediction and climate change impact assessment in agriculture
Crop yields are critically dependent on weather. A growing empirical literature models this relationship in order to project climate change impacts on the sector. We describe an approach to yield modeling that uses a semiparametric variant of a deep neural network, which can simultaneously account for complex nonlinear relationships in high-dimensional datasets, as well as known parametric structure and unobserved cross-sectional heterogeneity. Using data on corn yield from the US Midwest, we show that this approach outperforms both classical statistical methods and fully-nonparametric neural networks in predicting yields of years withheld during model training. Using scenarios from a suite of climate models, we show large negative impacts of climate change on corn yield, but less severe than impacts projected using classical statistical methods. In particular, our approach is less pessimistic in the warmest regions and the warmest scenarios.
Machine learning methods for crop yield prediction and climate change impact assessment in agriculture
Crop yields are critically dependent on weather. A growing empirical literature models this relationship in order to project climate change impacts on the sector. We describe an approach to yield modeling that uses a semiparametric variant of a deep neural network, which can simultaneously account for complex nonlinear relationships in high-dimensional datasets, as well as known parametric structure and unobserved cross-sectional heterogeneity. Using data on corn yield from the US Midwest, we show that this approach outperforms both classical statistical methods and fully-nonparametric neural networks in predicting yields of years withheld during model training. Using scenarios from a suite of climate models, we show large negative impacts of climate change on corn yield, but less severe than impacts projected using classical statistical methods. In particular, our approach is less pessimistic in the warmest regions and the warmest scenarios.
Machine learning methods for crop yield prediction and climate change impact assessment in agriculture
Andrew Crane-Droesch (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Intelligent Crop Recommender System for Yield Prediction Using Machine Learning Strategy
Springer Verlag | 2024
|Intelligent Crop Recommender System for Yield Prediction Using Machine Learning Strategy
Springer Verlag | 2024
|How can machine learning help in understanding the impact of climate change on crop yields?
DOAJ | 2023
|Impact of climate change on water resources and crop yield in the Middle Egypt region
DOAJ | 2021
|Climate Change and Uncertainty in Agriculture: Does Crop Insurance Help in India?
Springer Verlag | 2016
|