A platform for research: civil engineering, architecture and urbanism
Rainwater Catchment System Reliability Analysis for Al Abila Dam in Iraq’s Western Desert
Rainwater Catchment System Reliability (RCSR) is the chance that a system will deliver the required water for an interval of time. Rainwater Harvesting (RWH) is gaining popularity as a potential alternative water source for household or agricultural use. The reliability of the Al Abila dam in the western desert of Iraq was analyzed using a water budget simulation model and two explanations of reliability, time-based reliability, and volumetric reliability. To evaluate rainwater harvesting system performance, comprehensive software utilizing a method for everyday water balance using data from 20 years of daily rainfall. According to the findings, volumetric reliability, and for the three climate scenarios (wet, average, and dry year), increased as the storage volume increased until a threshold accrued on the storage capacity of 11.7 × 105 m3. While time-based reliability shows an increase up to a storage volume of 10.2 × 105 m3. Volumetric reliability of roughly 34–75% may be achieved, while only 14–28% time-based reliability may be achieved. Water saving efficiency decreases with increasing demand fraction, while the runoff coefficient has no significant influence on water effectiveness. While growing storage fraction value increases the effectiveness of water conservation and the value of the runoff coefficient influences the water saving efficiency. For both cases, water saving efficiency for the dam does not reach 50%. Using daily rainfall data, the technique given in this paper might be applied to predict water savings and the RWH systems’ reliability in different arid and semi-arid areas.
Rainwater Catchment System Reliability Analysis for Al Abila Dam in Iraq’s Western Desert
Rainwater Catchment System Reliability (RCSR) is the chance that a system will deliver the required water for an interval of time. Rainwater Harvesting (RWH) is gaining popularity as a potential alternative water source for household or agricultural use. The reliability of the Al Abila dam in the western desert of Iraq was analyzed using a water budget simulation model and two explanations of reliability, time-based reliability, and volumetric reliability. To evaluate rainwater harvesting system performance, comprehensive software utilizing a method for everyday water balance using data from 20 years of daily rainfall. According to the findings, volumetric reliability, and for the three climate scenarios (wet, average, and dry year), increased as the storage volume increased until a threshold accrued on the storage capacity of 11.7 × 105 m3. While time-based reliability shows an increase up to a storage volume of 10.2 × 105 m3. Volumetric reliability of roughly 34–75% may be achieved, while only 14–28% time-based reliability may be achieved. Water saving efficiency decreases with increasing demand fraction, while the runoff coefficient has no significant influence on water effectiveness. While growing storage fraction value increases the effectiveness of water conservation and the value of the runoff coefficient influences the water saving efficiency. For both cases, water saving efficiency for the dam does not reach 50%. Using daily rainfall data, the technique given in this paper might be applied to predict water savings and the RWH systems’ reliability in different arid and semi-arid areas.
Rainwater Catchment System Reliability Analysis for Al Abila Dam in Iraq’s Western Desert
Ammar Adham (author) / Rasha Abed (author) / Karrar Mahdi (author) / Waqed H. Hassan (author) / Michel Riksen (author) / Coen Ritsema (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Early rainwater exclusion system for clean rainwater catchment
European Patent Office | 2020
Early rainwater exclusion system for clean rainwater catchment
European Patent Office | 2019
|Recycling rainwater catchment apparatus and method using a rainwater catchment system for heli-deck
European Patent Office | 2016
|