A platform for research: civil engineering, architecture and urbanism
A Memetic Algorithm for the Green Vehicle Routing Problem
The green vehicle routing problem is a variation of the classic vehicle routing problem in which the transportation fleet is composed of electric vehicles with limited autonomy in need of recharge during their duties. As an NP-hard problem, this problem is very difficult to solve. In this paper, we first propose a memetic algorithm (MA)—a population-based algorithm—to tackle this problem. To be more specific, we incorporate an adaptive local search procedure based on a reward and punishment mechanism inspired by reinforcement learning to effectively manage the multiple neighborhood moves and guide the search, an effective backbone-based crossover operator to generate the feasible child solutions to obtain a better trade-off between intensification and diversification of the search, and a longest common subsequence-based population updating strategy to effectively manage the population. The purpose of this research is to propose a highly effective heuristic for solving the green vehicle routing problem and bring new ideas for this type of problem. Experimental results show that our algorithm is highly effective in comparison with the current state-of-the-art algorithms. In particular, our algorithm is able to find the best solutions for 84 out of the 92 instances. Key component of the approach is analyzed to evaluate its impact on the proposed algorithm and to identify the appropriate search mechanism for this type of problem.
A Memetic Algorithm for the Green Vehicle Routing Problem
The green vehicle routing problem is a variation of the classic vehicle routing problem in which the transportation fleet is composed of electric vehicles with limited autonomy in need of recharge during their duties. As an NP-hard problem, this problem is very difficult to solve. In this paper, we first propose a memetic algorithm (MA)—a population-based algorithm—to tackle this problem. To be more specific, we incorporate an adaptive local search procedure based on a reward and punishment mechanism inspired by reinforcement learning to effectively manage the multiple neighborhood moves and guide the search, an effective backbone-based crossover operator to generate the feasible child solutions to obtain a better trade-off between intensification and diversification of the search, and a longest common subsequence-based population updating strategy to effectively manage the population. The purpose of this research is to propose a highly effective heuristic for solving the green vehicle routing problem and bring new ideas for this type of problem. Experimental results show that our algorithm is highly effective in comparison with the current state-of-the-art algorithms. In particular, our algorithm is able to find the best solutions for 84 out of the 92 instances. Key component of the approach is analyzed to evaluate its impact on the proposed algorithm and to identify the appropriate search mechanism for this type of problem.
A Memetic Algorithm for the Green Vehicle Routing Problem
Bo Peng (author) / Yuan Zhang (author) / Yuvraj Gajpal (author) / Xiding Chen (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Memetic Algorithm for the Heterogeneous Fleet School Bus Routing Problem
British Library Online Contents | 2018
|Solving the Green Open Vehicle Routing Problem Using a Membrane-Inspired Hybrid Algorithm
DOAJ | 2022
|Solving the Multi-Depot Green Vehicle Routing Problem by a Hybrid Evolutionary Algorithm
DOAJ | 2020
|