A platform for research: civil engineering, architecture and urbanism
Parameter Optimization of Spiral Fertilizer Applicator Based on Artificial Neural Network
To determine the optimal fertilizer discharging performance, a spiral fertilizer applicator was designed according to orchard agricultural requirements. The influence of different parameter combinations of the spiral speed, blade diameter, and pitch on the coefficient of variation (CV) of the fertilizer discharge uniformity was predicted using a neural-network-based model by using the Box–Behnken design (BBD) test. According to the extracted results, the neural network model has a good prediction ability, with the determination coefficient of the model and the mean relative error reaching 0.99 and 2.29%, respectively. The impact of the fertilizer discharge parameter combinations on the discharging performances was examined from both macroscopic and microscopic perspectives. During the fertilizer discharge process, the openness formed between the spiral blades and fertilizer outlet presented periodic changes with the continuous rotation of the spiral blade, thus resulting in the uneven discharge of the fertilizer particles. In addition, there are interacting force chains among fertilizer particles, which are not broken in time during the fertilizer discharge procedure, thus resulting in uneven fertilizer discharge. With comprehensive consideration of the fertilizer discharge efficiency, the fertilizer discharge effect, and CV of the fertilizer discharge uniformity, the spiral parameter combination of the fertilizer discharge after neural network optimization are as follows: rotating speed of 47.6 rpm, blade diameter of 90 mm, pitch of 60 mm, and CV of fertilizer discharge uniformity of 19.05%. Under this optimal spiral parameter combination, the fertilizer discharge effect and discharge efficiency were considered to be relatively good. Our work provides references for the design optimization of the spiral fertilizer applicator and fertilizer discharge parameter combination.
Parameter Optimization of Spiral Fertilizer Applicator Based on Artificial Neural Network
To determine the optimal fertilizer discharging performance, a spiral fertilizer applicator was designed according to orchard agricultural requirements. The influence of different parameter combinations of the spiral speed, blade diameter, and pitch on the coefficient of variation (CV) of the fertilizer discharge uniformity was predicted using a neural-network-based model by using the Box–Behnken design (BBD) test. According to the extracted results, the neural network model has a good prediction ability, with the determination coefficient of the model and the mean relative error reaching 0.99 and 2.29%, respectively. The impact of the fertilizer discharge parameter combinations on the discharging performances was examined from both macroscopic and microscopic perspectives. During the fertilizer discharge process, the openness formed between the spiral blades and fertilizer outlet presented periodic changes with the continuous rotation of the spiral blade, thus resulting in the uneven discharge of the fertilizer particles. In addition, there are interacting force chains among fertilizer particles, which are not broken in time during the fertilizer discharge procedure, thus resulting in uneven fertilizer discharge. With comprehensive consideration of the fertilizer discharge efficiency, the fertilizer discharge effect, and CV of the fertilizer discharge uniformity, the spiral parameter combination of the fertilizer discharge after neural network optimization are as follows: rotating speed of 47.6 rpm, blade diameter of 90 mm, pitch of 60 mm, and CV of fertilizer discharge uniformity of 19.05%. Under this optimal spiral parameter combination, the fertilizer discharge effect and discharge efficiency were considered to be relatively good. Our work provides references for the design optimization of the spiral fertilizer applicator and fertilizer discharge parameter combination.
Parameter Optimization of Spiral Fertilizer Applicator Based on Artificial Neural Network
Mengqiang Zhang (author) / Yurong Tang (author) / Hong Zhang (author) / Haipeng Lan (author) / Hao Niu (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop
DOAJ | 2022
|Design and Development of a Variable Rate Applicator for Real-Time Application of Fertilizer
DOAJ | 2021
|