A platform for research: civil engineering, architecture and urbanism
Detecting Harvest Events in Plantation Forest Using Sentinel-1 and -2 Data via Google Earth Engine
South Africa is reported to experience timber shortages as a result of growing timber demands and pulp production, coupled with the government’s reluctance to grant new forestry permits. Rampant timber theft in the country makes these circumstances worse. The emergence of cloud-based platforms, such as Google Earth Engine (GEE), has greatly improved the accessibility and usability of high spatial and temporal Sentinel-1 and -2 data, especially in data-poor countries that lack high-performance computing systems for forest monitoring. Here, we demonstrate the potential of these resources for forest harvest detection. The results showed that Sentinel-1 data are efficient in detecting clear-cut events; both VH and VV backscatter signals decline sharply in accordance with clear-cutting and increase again when forest biomass increases. When correlated with highly responsive NDII, the VH and VV signals reached the best accuracies of 0.79 and 0.83, whereas the SWIR1 achieved –0.91. A Random Forest (RF) algorithm based on Sentinel-2 data also achieved over 90% accuracies for classifying harvested and forested areas. Overall, our study presents a cost-effective method for mapping clear-cut events in an economically important forestry area of South Africa while using GEE resources.
Detecting Harvest Events in Plantation Forest Using Sentinel-1 and -2 Data via Google Earth Engine
South Africa is reported to experience timber shortages as a result of growing timber demands and pulp production, coupled with the government’s reluctance to grant new forestry permits. Rampant timber theft in the country makes these circumstances worse. The emergence of cloud-based platforms, such as Google Earth Engine (GEE), has greatly improved the accessibility and usability of high spatial and temporal Sentinel-1 and -2 data, especially in data-poor countries that lack high-performance computing systems for forest monitoring. Here, we demonstrate the potential of these resources for forest harvest detection. The results showed that Sentinel-1 data are efficient in detecting clear-cut events; both VH and VV backscatter signals decline sharply in accordance with clear-cutting and increase again when forest biomass increases. When correlated with highly responsive NDII, the VH and VV signals reached the best accuracies of 0.79 and 0.83, whereas the SWIR1 achieved –0.91. A Random Forest (RF) algorithm based on Sentinel-2 data also achieved over 90% accuracies for classifying harvested and forested areas. Overall, our study presents a cost-effective method for mapping clear-cut events in an economically important forestry area of South Africa while using GEE resources.
Detecting Harvest Events in Plantation Forest Using Sentinel-1 and -2 Data via Google Earth Engine
Sifiso Xulu (author) / Nkanyiso Mbatha (author) / Kabir Peerbhay (author) / Michael Gebreslasie (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Springer Verlag | 2025
|Rapid Estimation of Decameter FPAR from Sentinel-2 Imagery on the Google Earth Engine
DOAJ | 2022
|