A platform for research: civil engineering, architecture and urbanism
Change in Alpine Grassland NPP in Response to Climate Variation and Human Activities in the Yellow River Source Zone from 2000 to 2020
Identifying the relative contributions of climate change and human activities to alpine grassland dynamics is critical for understanding grassland degradation mechanisms. In this study, first, the actual NPP (NPPa) was obtained by MOD17A3. Second, we used the Zhou Guangsheng model to simulate the potential met net primary productivity (NPPp). Finally, the NPP generated by anthropogenic activities (NPPh) was estimated by calculating the difference between NPPp and NPPa. Then, the relative contributions of climate change and human activities to NPP changes in grasslands were quantitatively assessed by analyzing trends in NPPp and NPPa. Thereby, the drivers of NPP change in the Yellow River source grassland were identified. The results showed that the temperature and precipitation in the study area showed a warm-humid climate trend from 2000 to 2020. The NPPp and NPPa increased at a rate of 1.07 g C/m2 and 1.51 g C/m2 per year, respectively, while the NPPh decreased at a rate of 0.46 g C/m2 per year. It can be seen that human activities had a positive effect on the change of NPP in the Yellow River source grassland from the change rate. The relative contribution analysis showed that 55.90% of grassland NPP increased due to climate change, 40.16% of grassland NPP increased due to human activities, and the grassland degradation was not significant. The research results can provide a theoretical basis and technical support for the next step of the Yellow River source grassland ecological protection project.
Change in Alpine Grassland NPP in Response to Climate Variation and Human Activities in the Yellow River Source Zone from 2000 to 2020
Identifying the relative contributions of climate change and human activities to alpine grassland dynamics is critical for understanding grassland degradation mechanisms. In this study, first, the actual NPP (NPPa) was obtained by MOD17A3. Second, we used the Zhou Guangsheng model to simulate the potential met net primary productivity (NPPp). Finally, the NPP generated by anthropogenic activities (NPPh) was estimated by calculating the difference between NPPp and NPPa. Then, the relative contributions of climate change and human activities to NPP changes in grasslands were quantitatively assessed by analyzing trends in NPPp and NPPa. Thereby, the drivers of NPP change in the Yellow River source grassland were identified. The results showed that the temperature and precipitation in the study area showed a warm-humid climate trend from 2000 to 2020. The NPPp and NPPa increased at a rate of 1.07 g C/m2 and 1.51 g C/m2 per year, respectively, while the NPPh decreased at a rate of 0.46 g C/m2 per year. It can be seen that human activities had a positive effect on the change of NPP in the Yellow River source grassland from the change rate. The relative contribution analysis showed that 55.90% of grassland NPP increased due to climate change, 40.16% of grassland NPP increased due to human activities, and the grassland degradation was not significant. The research results can provide a theoretical basis and technical support for the next step of the Yellow River source grassland ecological protection project.
Change in Alpine Grassland NPP in Response to Climate Variation and Human Activities in the Yellow River Source Zone from 2000 to 2020
Feng Zhang (author) / Xiasong Hu (author) / Jing Zhang (author) / Chengyi Li (author) / Yupeng Zhang (author) / Xilai Li (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Variation trends of runoffs in the Middle Yellow River basin and its response to climate change
British Library Online Contents | 2009
|Climate Change Characteristics of Typical Grassland in the Mongolian Plateau from 1978 to 2020
DOAJ | 2022
|