A platform for research: civil engineering, architecture and urbanism
Proportional–Integral–Derivative (PID) Controller Tuning using Particle Swarm Optimization Algorithm
The proportional-integral-derivative (PID) controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI) method of particle swarm optimization (PSO) algorithm for tuning the optimal proportional-integral derivative (PID) controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.
Proportional–Integral–Derivative (PID) Controller Tuning using Particle Swarm Optimization Algorithm
The proportional-integral-derivative (PID) controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI) method of particle swarm optimization (PSO) algorithm for tuning the optimal proportional-integral derivative (PID) controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.
Proportional–Integral–Derivative (PID) Controller Tuning using Particle Swarm Optimization Algorithm
J. S. Bassi (author) / E. E. Omizegba (author) / P. Y. Mshelia (author)
2012
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2024
|British Library Online Contents | 2011
|Robust design using particle swarm and genetic algorithm optimization
British Library Conference Proceedings | 2003
|