A platform for research: civil engineering, architecture and urbanism
Energy Minimization in Piperazine Promoted MDEA-Based CO2 Capture Process
A piperazine (PZ)-promoted methyldiethanolamine (MDEA) solution for a carbon dioxide (CO2) removal process from the flue gas of a large-scale coal power plant has been simulated. An Aspen Plus® was used to perform the simulation process. Initially, the effects of MDEA/PZ concentration ratio and stripper pressure on the regeneration energy of CO2 capture process were investigated. The MDEA/PZ concentration ratio of 35/15 wt.% (35 wt. MDEA and 15 wt.% PZ) was selected as an appropriate concentration. The reboiler duty of 3.235 MJ/kg CO2 was obtained at 35/15 wt.% concentration ratio of MDEA/PZ. It was considered a reference or base case, and process modifications including rich vapor compression (RVC) process, cold solvent split (CSS), and the combination of both processes were investigated to check its effect on the energy requirement. A total equivalent work of 0.7 MJe/kg CO2 in the RVC and a reboiler duty of 2.78 MJ/kg CO2 was achieved in the CSS process. Similarly, the total equivalent work, reboiler duty, and condenser duty of 0.627 MJe/kg CO2, 2.44 MJ/kg CO2, and 0.33 MJ/kg CO2, respectively, were obtained in the combined process. The reboiler duty and the total equivalent work were reduced by about 24.6 and 16.2%, respectively, as compared to the reference case. The total energy cost saving was 1.79 M$/yr. Considering the additional equipment cost in the combined process, the total cost saving was 0.67 M$ per year.
Energy Minimization in Piperazine Promoted MDEA-Based CO2 Capture Process
A piperazine (PZ)-promoted methyldiethanolamine (MDEA) solution for a carbon dioxide (CO2) removal process from the flue gas of a large-scale coal power plant has been simulated. An Aspen Plus® was used to perform the simulation process. Initially, the effects of MDEA/PZ concentration ratio and stripper pressure on the regeneration energy of CO2 capture process were investigated. The MDEA/PZ concentration ratio of 35/15 wt.% (35 wt. MDEA and 15 wt.% PZ) was selected as an appropriate concentration. The reboiler duty of 3.235 MJ/kg CO2 was obtained at 35/15 wt.% concentration ratio of MDEA/PZ. It was considered a reference or base case, and process modifications including rich vapor compression (RVC) process, cold solvent split (CSS), and the combination of both processes were investigated to check its effect on the energy requirement. A total equivalent work of 0.7 MJe/kg CO2 in the RVC and a reboiler duty of 2.78 MJ/kg CO2 was achieved in the CSS process. Similarly, the total equivalent work, reboiler duty, and condenser duty of 0.627 MJe/kg CO2, 2.44 MJ/kg CO2, and 0.33 MJ/kg CO2, respectively, were obtained in the combined process. The reboiler duty and the total equivalent work were reduced by about 24.6 and 16.2%, respectively, as compared to the reference case. The total energy cost saving was 1.79 M$/yr. Considering the additional equipment cost in the combined process, the total cost saving was 0.67 M$ per year.
Energy Minimization in Piperazine Promoted MDEA-Based CO2 Capture Process
Bilal Alam Khan (author) / Asad Ullah (author) / Muhammad Wajid Saleem (author) / Abdullah Nawaz Khan (author) / Muhammad Faiq (author) / Mir Haris (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2013
|