A platform for research: civil engineering, architecture and urbanism
Contactless approach to determine pavement skid resistance for Pavement Management System
Standard method to assess the pavement profile is to calculate the MPD (Mean Profile Depth) index based on results obtained usually by usage of laser techniques. In analysis the models of the surface pavements have been used in order to calculate the s1, s2, s3 parameters values corresponding to mega-, macro- and microtexture respectively. The values of the developed parameters s1, s2, s3 are calculated from the specific power spectral density values of surface roughness obtained for the threshold pavement roughness wavelength equal to 0.1, 0.05, 0.005 and 0.0005 m. The skid resistance has been correlated to the s1, s2, s3 parameters using 11 varied cases related to asphalt and concrete pavements. Skid resistance tests have been performed using CSR (Continuous Skid Resistance) device with fixed slip ratio equal to 13%. Three different test speed values 45, 65 and 95 km/h have been used. The obtained results lead to factorial correlation equations between developed parameters and skid resistance indices. Correlation results for uncontaminated pavement surface can be characterized by the coefficient of determination values in range between 0.55 and 0.94. The results can be used for contactless determination of pavement skid resistance in Pavement Management System.
Contactless approach to determine pavement skid resistance for Pavement Management System
Standard method to assess the pavement profile is to calculate the MPD (Mean Profile Depth) index based on results obtained usually by usage of laser techniques. In analysis the models of the surface pavements have been used in order to calculate the s1, s2, s3 parameters values corresponding to mega-, macro- and microtexture respectively. The values of the developed parameters s1, s2, s3 are calculated from the specific power spectral density values of surface roughness obtained for the threshold pavement roughness wavelength equal to 0.1, 0.05, 0.005 and 0.0005 m. The skid resistance has been correlated to the s1, s2, s3 parameters using 11 varied cases related to asphalt and concrete pavements. Skid resistance tests have been performed using CSR (Continuous Skid Resistance) device with fixed slip ratio equal to 13%. Three different test speed values 45, 65 and 95 km/h have been used. The obtained results lead to factorial correlation equations between developed parameters and skid resistance indices. Correlation results for uncontaminated pavement surface can be characterized by the coefficient of determination values in range between 0.55 and 0.94. The results can be used for contactless determination of pavement skid resistance in Pavement Management System.
Contactless approach to determine pavement skid resistance for Pavement Management System
Fengier Jakub (author) / Słowik Mieczysław (author) / Pożarycki Andrzej (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Pavement Roughness and Skid Resistance
NTIS | 1986
|Pavement Roughness and skid resistance : Reports
TIBKAT | 1986
|Skid Resistance of Highway Pavement Surfaces
NTIS | 1974
|High-wear-resistance anti-skid pavement aggregate, pavement and preparation method
European Patent Office | 2020
|