A platform for research: civil engineering, architecture and urbanism
Future sea level rise dominates changes in worst case extreme sea levels along the global coastline by 2100
We provide the magnitude of a worst case scenario for extreme sea levels (ESLs) along the global coastline by 2100. This worst case scenario for ESLs is calculated as a combination of sea surface height associated with storm surge and wave (100 year return period, the 95th percentile), high tide (the 95th percentile) and a low probability sea level rise scenario (the 95th percentile). Under these conditions, end-of-21st century ESLs have a 5% chance of exceeding 4.2 m (global coastal average), compared to 2.6 m during the baseline period (1980–2014). By 2100 almost 45% of the global coastline would experience ESLs above the global mean of 4.2 m, with up to 9–10 m for the East China Sea, Japan and North European coastal areas. Up to 86% of coastal locations would face ESLs above 3 m (100 year return period) by 2100, compared to 33% currently. Up to 90% of increases in magnitude of ESLs are driven by future sea level rise, compare to 10% associated with changes in storm surges and waves. By 2030–2040 the present-day 100 year return period for ESLs would be experienced at least once a year in tropical areas. This 100-fold increase in frequency will take place on all global coastlines by 2100.
Future sea level rise dominates changes in worst case extreme sea levels along the global coastline by 2100
We provide the magnitude of a worst case scenario for extreme sea levels (ESLs) along the global coastline by 2100. This worst case scenario for ESLs is calculated as a combination of sea surface height associated with storm surge and wave (100 year return period, the 95th percentile), high tide (the 95th percentile) and a low probability sea level rise scenario (the 95th percentile). Under these conditions, end-of-21st century ESLs have a 5% chance of exceeding 4.2 m (global coastal average), compared to 2.6 m during the baseline period (1980–2014). By 2100 almost 45% of the global coastline would experience ESLs above the global mean of 4.2 m, with up to 9–10 m for the East China Sea, Japan and North European coastal areas. Up to 86% of coastal locations would face ESLs above 3 m (100 year return period) by 2100, compared to 33% currently. Up to 90% of increases in magnitude of ESLs are driven by future sea level rise, compare to 10% associated with changes in storm surges and waves. By 2030–2040 the present-day 100 year return period for ESLs would be experienced at least once a year in tropical areas. This 100-fold increase in frequency will take place on all global coastlines by 2100.
Future sea level rise dominates changes in worst case extreme sea levels along the global coastline by 2100
Svetlana Jevrejeva (author) / Joanne Williams (author) / Michalis I Vousdoukas (author) / Luke P Jackson (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Extreme sea level rise along the Indian Ocean coastline: observations and 21st century projections
DOAJ | 2022
|Projections of future beach loss along the Chinese coastline due to sea level rise
Taylor & Francis Verlag | 2023
|Extreme sea level variability dominates coastal flood risk changes at decadal time scales
DOAJ | 2021
|