A platform for research: civil engineering, architecture and urbanism
Drought Shapes Photosynthetic Production Traits and Water Use Traits along with Their Relationships with Leaves of Typical Desert Shrubs in Qaidam
Leaf functional traits in drylands are sensitive to environmental changes, which are closely related to plant growth strategies and resource utilization ability and can reflect the balance of substance synthesis and water loss. However, the influence of environmental factors on photosynthetic production traits and water use traits is still unclear in drylands. In this study, nine environmental factors (climatic characteristics and soil physical and chemical properties), leaf net photosynthetic rate (A), transpiration rate (E), and stomatal conductance (GSW) were measured via 60 plant samples and 45 soil samples, which were collected at five sampling sites according to rainfall gradient. Redundancy analysis (RDA), structural equation model (SEM), and regression analysis were used to analyze the influencing mechanism of drought on photosynthetic production traits and water use traits. The results provided the following conclusions: (i) The hydrothermal condition determined A, E, and GSW by affecting the spatial distribution of soil nutrients (SN) and soil salinity (SS); meanwhile, temperature was able to affect A, E, and GSW directly. (ii) The water content (WC) was the key driver of the strength of the synergistic relationship between photosynthetic production traits and water use traits; soil salinity (SS) was the main driver of the synergistic relationship between E and GSW.
Drought Shapes Photosynthetic Production Traits and Water Use Traits along with Their Relationships with Leaves of Typical Desert Shrubs in Qaidam
Leaf functional traits in drylands are sensitive to environmental changes, which are closely related to plant growth strategies and resource utilization ability and can reflect the balance of substance synthesis and water loss. However, the influence of environmental factors on photosynthetic production traits and water use traits is still unclear in drylands. In this study, nine environmental factors (climatic characteristics and soil physical and chemical properties), leaf net photosynthetic rate (A), transpiration rate (E), and stomatal conductance (GSW) were measured via 60 plant samples and 45 soil samples, which were collected at five sampling sites according to rainfall gradient. Redundancy analysis (RDA), structural equation model (SEM), and regression analysis were used to analyze the influencing mechanism of drought on photosynthetic production traits and water use traits. The results provided the following conclusions: (i) The hydrothermal condition determined A, E, and GSW by affecting the spatial distribution of soil nutrients (SN) and soil salinity (SS); meanwhile, temperature was able to affect A, E, and GSW directly. (ii) The water content (WC) was the key driver of the strength of the synergistic relationship between photosynthetic production traits and water use traits; soil salinity (SS) was the main driver of the synergistic relationship between E and GSW.
Drought Shapes Photosynthetic Production Traits and Water Use Traits along with Their Relationships with Leaves of Typical Desert Shrubs in Qaidam
Liping Zhao (author) / Hui Chen (author) / Ben Chen (author) / Yumeng Wang (author) / Hongyan Sun (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
The Responses of Four Typical Annual Desert Species to Drought and Mixed Growth
DOAJ | 2022
|DOAJ | 2019
|