A platform for research: civil engineering, architecture and urbanism
Synergistic effect of magnetic magnetite and greigite nanoparticles dispersed pinewood biochar for aqueous lead(II) and cadmium(II) adsorption
Heavy metals such as lead and cadmium cause adverse effects on all living organisms. Their remediation is complex in the aqueous phase. Biochar is a low-cost, environmentally friendly adsorbent material that exhibited a limited ability to adsorb Pb2+ and Cd2+. Iron-based magnetite and greigite nanoparticles have proven high adsorption capacity due to high amounts of oxygen and sulfur-contained functional groups per unit volume. In this study, a mixture of greigite and magnetite nanoparticles was simultaneously synthesized on pinewood biochar (BC), aiding co-precipitation from a Fe2+/Fe3+ and S2- salts mixture (Fe3O4-Fe3S4/BC), that offers a cost-effective, sustainable, and efficient material for Pb2+ and Cd2+ removal. BC, Fe3O4-Fe3S4/BC, and Pb2+ and Cd2+ adsorbed Fe3O4-Fe3S4/BC materials were characterized to differentiate surface morphologies, elemental compositions, and surface chemical states. The Fe3O4-Fe3S4/BC composite exhibited an average nanoparticle diameter of ∼20 nm. Fe3O4-Fe3S4/BC showed Langmuir adsorption capacities of 138.9 and 49.5 mg g-1 for Pb2+ and Cd2+ at pH 5 (25 °C). Pb2+ and Cd2+ followed pseudo-second-order kinetics, and the equilibriums were achieved after ∼2 h and ∼30 min, respectively, for 125 and 1250 μmol L-1 concentrations, respectively, where the fast adsorption rates make Fe3O4-Fe3S4/BC hybrid system a practical option for real-time treatment. Further, adsorption performances were influenced by ionic strength, dose optimization, and the presence of competing ions, suggesting the potential for fine-tuning adsorbent conditions in practical applications. This study enhanced the understanding of adsorption characteristics for a treatment facility that can effectively remediate lead and cadmium-contaminated wastewater. While there have been studies on using biochar and nanoparticles separately for Pb2+ and Cd2+ adsorption, this research bridges the gap by demonstrating the synergistic effect for Pb2+ and Cd2+ adsorption from hybrid magnetite-greigite nanoparticles.
Synergistic effect of magnetic magnetite and greigite nanoparticles dispersed pinewood biochar for aqueous lead(II) and cadmium(II) adsorption
Heavy metals such as lead and cadmium cause adverse effects on all living organisms. Their remediation is complex in the aqueous phase. Biochar is a low-cost, environmentally friendly adsorbent material that exhibited a limited ability to adsorb Pb2+ and Cd2+. Iron-based magnetite and greigite nanoparticles have proven high adsorption capacity due to high amounts of oxygen and sulfur-contained functional groups per unit volume. In this study, a mixture of greigite and magnetite nanoparticles was simultaneously synthesized on pinewood biochar (BC), aiding co-precipitation from a Fe2+/Fe3+ and S2- salts mixture (Fe3O4-Fe3S4/BC), that offers a cost-effective, sustainable, and efficient material for Pb2+ and Cd2+ removal. BC, Fe3O4-Fe3S4/BC, and Pb2+ and Cd2+ adsorbed Fe3O4-Fe3S4/BC materials were characterized to differentiate surface morphologies, elemental compositions, and surface chemical states. The Fe3O4-Fe3S4/BC composite exhibited an average nanoparticle diameter of ∼20 nm. Fe3O4-Fe3S4/BC showed Langmuir adsorption capacities of 138.9 and 49.5 mg g-1 for Pb2+ and Cd2+ at pH 5 (25 °C). Pb2+ and Cd2+ followed pseudo-second-order kinetics, and the equilibriums were achieved after ∼2 h and ∼30 min, respectively, for 125 and 1250 μmol L-1 concentrations, respectively, where the fast adsorption rates make Fe3O4-Fe3S4/BC hybrid system a practical option for real-time treatment. Further, adsorption performances were influenced by ionic strength, dose optimization, and the presence of competing ions, suggesting the potential for fine-tuning adsorbent conditions in practical applications. This study enhanced the understanding of adsorption characteristics for a treatment facility that can effectively remediate lead and cadmium-contaminated wastewater. While there have been studies on using biochar and nanoparticles separately for Pb2+ and Cd2+ adsorption, this research bridges the gap by demonstrating the synergistic effect for Pb2+ and Cd2+ adsorption from hybrid magnetite-greigite nanoparticles.
Synergistic effect of magnetic magnetite and greigite nanoparticles dispersed pinewood biochar for aqueous lead(II) and cadmium(II) adsorption
Prashan M. Rodrigo (author) / Raghava R. Kommalapati (author)
2025
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 1995
|British Library Conference Proceedings | 1995
|The Sorption of Lead and Cadmium by Hydroxyapatite-Biochar Nanocomposite from Aqueous Solution
Springer Verlag | 2025
|