A platform for research: civil engineering, architecture and urbanism
Biohythane Production from Domestic Wastewater Sludge and Cow Dung Mixture Using Two-Step Anaerobic Fermentation Process
The current study explored bioenergy, particularly biohythane (a combination of biohydrogen (bioH2) and biomethane (bioCH4)), production from cow dung and untreated domestic wastewater sludge to valorize the waste into a value-added product. The experimental study consisted of a two-step process: dark fermentation (DF) and anaerobic digestion (AD) with a range of processing conditions varying the temperature and pH (acidic, neutral, and basic). The study maintained thermophilic conditions (55 °C) for bioH2 production and mesophilic conditions (35 °C) for bioCH4 production. The highest yields of bioH2 and bioCH4 were obtained at a pH of 5.5 (108.04 mL H2/g VS) and a pH of 7.5 (768.54 mL CH4/g VS), respectively. Microorganisms, such as Lactobacillus brevis and Clostridium butyricum, in the wastewater sludge accelerated the conversion reaction resulting in the highest bioH2 yield for an acidic environment, while Clostridium and Bacilli enhanced bioCH4 yield in basic conditions. The maximum cumulative yield of biohythane was obtained under basic pH conditions (pH 7.5) through DF and AD, resulting in 811.12 mL/g VS and a higher volumetric energy density of 3.316 MJ/L as compared to other reaction conditions. The experimental data were modelled using a modified Gompertz’s model at a 95% confidence interval and showed the best-fitting data from experimental and simulation results for biohythane production. The regression coefficient R2 value was highly significant at 0.995 and 0.992 for bioH2 and bioCH4 with the change in pH during biohythane production. Thus, this study presented an effective pathway to utilize untreated domestic wastewater sludge as an inoculum, showcasing the potential of biohythane production and the generation of valuable metabolic end-products across a broad range of pH conditions.
Biohythane Production from Domestic Wastewater Sludge and Cow Dung Mixture Using Two-Step Anaerobic Fermentation Process
The current study explored bioenergy, particularly biohythane (a combination of biohydrogen (bioH2) and biomethane (bioCH4)), production from cow dung and untreated domestic wastewater sludge to valorize the waste into a value-added product. The experimental study consisted of a two-step process: dark fermentation (DF) and anaerobic digestion (AD) with a range of processing conditions varying the temperature and pH (acidic, neutral, and basic). The study maintained thermophilic conditions (55 °C) for bioH2 production and mesophilic conditions (35 °C) for bioCH4 production. The highest yields of bioH2 and bioCH4 were obtained at a pH of 5.5 (108.04 mL H2/g VS) and a pH of 7.5 (768.54 mL CH4/g VS), respectively. Microorganisms, such as Lactobacillus brevis and Clostridium butyricum, in the wastewater sludge accelerated the conversion reaction resulting in the highest bioH2 yield for an acidic environment, while Clostridium and Bacilli enhanced bioCH4 yield in basic conditions. The maximum cumulative yield of biohythane was obtained under basic pH conditions (pH 7.5) through DF and AD, resulting in 811.12 mL/g VS and a higher volumetric energy density of 3.316 MJ/L as compared to other reaction conditions. The experimental data were modelled using a modified Gompertz’s model at a 95% confidence interval and showed the best-fitting data from experimental and simulation results for biohythane production. The regression coefficient R2 value was highly significant at 0.995 and 0.992 for bioH2 and bioCH4 with the change in pH during biohythane production. Thus, this study presented an effective pathway to utilize untreated domestic wastewater sludge as an inoculum, showcasing the potential of biohythane production and the generation of valuable metabolic end-products across a broad range of pH conditions.
Biohythane Production from Domestic Wastewater Sludge and Cow Dung Mixture Using Two-Step Anaerobic Fermentation Process
Faraz Sufyan (author) / Mehmood Ali (author) / Sadia Khan (author) / Nazia Hossain (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Hydrogen bio-production of carbohydrate fermentation by anaerobic activated sludge process
British Library Conference Proceedings | 1995
|Laboratory studies on the temperature-phased anaerobic digestion of domestic wastewater sludge
British Library Conference Proceedings | 1995
|Decreased sludge production strategy for domestic wastewater treatment
British Library Conference Proceedings | 1994
|Commercialization of the Acimet Process for Phased Anaerobic Fermentation of Sludge
British Library Online Contents | 1996
|