A platform for research: civil engineering, architecture and urbanism
Obtaining construction materials based on the dolomite lime of accelerated forced-carbonization hardening
Introduction. To solve the problem of increasing the concentration of greenhouse gases in the atmosphere leading to global environmental problems, searches of ways to reduce carbon dioxide emissions are conducted in the field of construction material production. lower burning temperature, lower carbon dioxide emissions, and further binding of the exuding carbon dioxide to insoluble compounds, which determine the obtainment of a dolomite lime-based material with high mechanical properties are characteristic of dolomite lime. Materials and methods. Dolomite rock with a fraction of 5 mm to 10 mm was burned in a laboratory chamber furnace, while the calcined product was ground to pass through a 1.25 mm mesh sieve and tempered with water. The dolomite lime obtained after hydration was pressed into cylinder samples with a diameter and a height of 30 mm. The samples were subjected to forced carbonization in a particular chamber at a certain carbon dioxide concentration and for a certain chamber holding time. Results. The physicomechanical characteristics of the experimental carbonized samples were determined (compressive strength of 2 to 36 MPa with an average density of 1500 to 1800 kg/m3). The samples got hard under conditions of an increased carbon dioxide concentration. The results obtained under laboratory conditions were tested under industrial conditions at a functioning enterprise by pressing a single brick batch, its subsequent carbonate hardening in a pilot industrial chamber for forced carbonization, and determination of the main standardized properties. Conclusions. The low-burned carbonate-hardened dolomite lime allows reducing carbon dioxide emission during production by means of lowering the burning temperature with the subsequent use of the exuding carbon dioxide for the implementation of carbonate hardening of dolomite lime-based products.
Obtaining construction materials based on the dolomite lime of accelerated forced-carbonization hardening
Introduction. To solve the problem of increasing the concentration of greenhouse gases in the atmosphere leading to global environmental problems, searches of ways to reduce carbon dioxide emissions are conducted in the field of construction material production. lower burning temperature, lower carbon dioxide emissions, and further binding of the exuding carbon dioxide to insoluble compounds, which determine the obtainment of a dolomite lime-based material with high mechanical properties are characteristic of dolomite lime. Materials and methods. Dolomite rock with a fraction of 5 mm to 10 mm was burned in a laboratory chamber furnace, while the calcined product was ground to pass through a 1.25 mm mesh sieve and tempered with water. The dolomite lime obtained after hydration was pressed into cylinder samples with a diameter and a height of 30 mm. The samples were subjected to forced carbonization in a particular chamber at a certain carbon dioxide concentration and for a certain chamber holding time. Results. The physicomechanical characteristics of the experimental carbonized samples were determined (compressive strength of 2 to 36 MPa with an average density of 1500 to 1800 kg/m3). The samples got hard under conditions of an increased carbon dioxide concentration. The results obtained under laboratory conditions were tested under industrial conditions at a functioning enterprise by pressing a single brick batch, its subsequent carbonate hardening in a pilot industrial chamber for forced carbonization, and determination of the main standardized properties. Conclusions. The low-burned carbonate-hardened dolomite lime allows reducing carbon dioxide emission during production by means of lowering the burning temperature with the subsequent use of the exuding carbon dioxide for the implementation of carbonate hardening of dolomite lime-based products.
Obtaining construction materials based on the dolomite lime of accelerated forced-carbonization hardening
Tamara А. Bakhtina (author) / Nikolay V. Lyubomirskiy (author) / Aleksandr S. Bakhtin (author) / Vitaliy V. Nikolaenko (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Dolomite lime as mortar material
Engineering Index Backfile | 1934
|Accelerated Hardening of Mortars with Hydraulic Binders of Silica Fume/Lime
British Library Online Contents | 1995
|Accelerated Mix Design of Lime Stabilized Materials
ASCE | 2015
|Accelerated Mix Design of Lime Stabilized Materials
Online Contents | 2016
|