A platform for research: civil engineering, architecture and urbanism
Student Development at the Boundaries: Makerspaces as Affordances for Engineering Students’ Development
University-based makerspaces are receiving increasing attention as promising innovations that may contribute to the development of future engineers. Using a theory of social boundary spaces, we investigated whether the diverse experiences offered at university-based makerspaces may contribute to students’ learning and development of various “soft” or “21st century” skills that go beyond engineering-specific content knowledge. Through interviews with undergraduate student users at two university-based makerspaces in the United States we identified seven different types of boundary spaces (where multiple communities, and the individuals and activities affiliated with those communities, come together). We identified students engaging in the processes of identification, reflection, and coordination, which allowed them to make sense of, and navigate, the various boundary spaces they encountered in the makerspaces. These processes provided students with opportunities to engage with, and learn from, individuals and practices affiliated with various communities and disciplines. These opportunities can lead to students’ development of necessary skills to creatively and collaboratively address interdisciplinary socio-scientific problems. We suggest that university-based makerspaces can offer important developmental experiences for a diverse body of students that may be challenging for a single university department, program, or course to offer. Based on these findings, we recommend university programs and faculty intentionally integrate makerspace activities into undergraduate curricula to support students’ development of skills, knowledge, and practices relevant for engineering as well as 21st century skills more broadly.
Student Development at the Boundaries: Makerspaces as Affordances for Engineering Students’ Development
University-based makerspaces are receiving increasing attention as promising innovations that may contribute to the development of future engineers. Using a theory of social boundary spaces, we investigated whether the diverse experiences offered at university-based makerspaces may contribute to students’ learning and development of various “soft” or “21st century” skills that go beyond engineering-specific content knowledge. Through interviews with undergraduate student users at two university-based makerspaces in the United States we identified seven different types of boundary spaces (where multiple communities, and the individuals and activities affiliated with those communities, come together). We identified students engaging in the processes of identification, reflection, and coordination, which allowed them to make sense of, and navigate, the various boundary spaces they encountered in the makerspaces. These processes provided students with opportunities to engage with, and learn from, individuals and practices affiliated with various communities and disciplines. These opportunities can lead to students’ development of necessary skills to creatively and collaboratively address interdisciplinary socio-scientific problems. We suggest that university-based makerspaces can offer important developmental experiences for a diverse body of students that may be challenging for a single university department, program, or course to offer. Based on these findings, we recommend university programs and faculty intentionally integrate makerspace activities into undergraduate curricula to support students’ development of skills, knowledge, and practices relevant for engineering as well as 21st century skills more broadly.
Student Development at the Boundaries: Makerspaces as Affordances for Engineering Students’ Development
Yoon Ha Choi (author) / Jana Bouwma-Gearhart (author) / Cindy A. Lenhart (author) / Idalis Villanueva (author) / Louis S. Nadelson (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Undergraduate Students Becoming Engineers: The Affordances of University-Based Makerspaces
DOAJ | 2021
|Enabling Microfluidics: From Clean Rooms to Makerspaces
NTIS | 2016
|