A platform for research: civil engineering, architecture and urbanism
Projection of Future Meteorological Droughts in Lake Urmia Basin, Iran
Future changes (2015–2100) in precipitation and meteorological droughts in Lake Urmia Basin were investigated using an average mean ensemble of eight general circulation models (GCMs) with high-resolution datasets in socioeconomic pathway scenarios (SSPs) from the Coupled Model Intercomparison Project (CMIP6). In order to project the drought, the standardized precipitation index (SPI) was calculated. Overall, the results revealed that precipitation in Lake Urmia Basin will decrease by 3.21% and 7.18% in the SSP1-2.6 and SSP5-8.5 scenarios, respectively. The results based on 6-month-timescale SPI indices projected more “Extremely dry” events in SSP5-8.5 scenarios. The frequency of “Extremely dry” months in SSP5-8.5 compared to SSP1-2.6 is expected to increase by 14, 7, 14, 10, 5, 14, and 7 months for the Mahabad, Maragheh, Saqez, Sarab, Tabriz, Takab, and Urmia stations, respectively. In contrast, the frequency of “Extremely wet” months will decline for all stations in Lake Urmia Basin. The results of this study provide useful insight for considering drought prevention measures to be implemented in advance for Lake Urmia Basin, which is currently experiencing various environmental issues.
Projection of Future Meteorological Droughts in Lake Urmia Basin, Iran
Future changes (2015–2100) in precipitation and meteorological droughts in Lake Urmia Basin were investigated using an average mean ensemble of eight general circulation models (GCMs) with high-resolution datasets in socioeconomic pathway scenarios (SSPs) from the Coupled Model Intercomparison Project (CMIP6). In order to project the drought, the standardized precipitation index (SPI) was calculated. Overall, the results revealed that precipitation in Lake Urmia Basin will decrease by 3.21% and 7.18% in the SSP1-2.6 and SSP5-8.5 scenarios, respectively. The results based on 6-month-timescale SPI indices projected more “Extremely dry” events in SSP5-8.5 scenarios. The frequency of “Extremely dry” months in SSP5-8.5 compared to SSP1-2.6 is expected to increase by 14, 7, 14, 10, 5, 14, and 7 months for the Mahabad, Maragheh, Saqez, Sarab, Tabriz, Takab, and Urmia stations, respectively. In contrast, the frequency of “Extremely wet” months will decline for all stations in Lake Urmia Basin. The results of this study provide useful insight for considering drought prevention measures to be implemented in advance for Lake Urmia Basin, which is currently experiencing various environmental issues.
Projection of Future Meteorological Droughts in Lake Urmia Basin, Iran
Babak Ghazi (author) / Sanjana Dutt (author) / Ali Torabi Haghighi (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Risk Assessment of Climate Change Impacts on Runoff in Urmia Lake Basin, Iran
Online Contents | 2016
|Risk Assessment of Climate Change Impacts on Runoff in Urmia Lake Basin, Iran
Online Contents | 2016
|Linking Water Scarcity to Mental Health: Hydro–Social Interruptions in the Lake Urmia Basin, Iran
DOAJ | 2019
|