A platform for research: civil engineering, architecture and urbanism
Utilization of Rubber Powder of Waste Tyres in Foam Concrete
Foam concrete or light concrete has become increasingly recognizable in commercial and construction field. Foam concrete is not just light in its weight but also light in cost, as there is no coarse aggregate needed in its production. Application of foam concrete is limited due to the fact that it is not as strong as conventional concrete in terms of strength and rigidness. Therefore, this study is to investigate the potential of foam concrete incorporating with rubber powder of waste tire and admixture as an additive material to improve its strength and workability. Thus, the use of rubber powder in this study could enhance the strength by filling the voids in foam concrete. The amount of rubber powder added as additive in foam concrete is 0%, 5%, 10%, 15% and 20% respectively. The amount of plasticizers used is limited to less than 0.4% to the weight of cement. The mix design was set to achieve density of 1800kg/m3. The workability of foam concrete is decreasing as the percentage of rubber power was increasing. The foam concrete containing 5%of rubber powder has highest compressive strength with value of 20.6 MPa for 7 days water curing and 22.3 MPa for 28 days water curing. Significantly showing an increase of 1.7 MPa. The highest value of tensile strength for both air curing 7 and 28 days are 1.86 MPa and 1.97 MPa also held by 3% of rubber powder mix. As a conclusion the optimum rubber powder content to be used in foam concrete is 5% that gives the highest results in terms of workability and strength.
Utilization of Rubber Powder of Waste Tyres in Foam Concrete
Foam concrete or light concrete has become increasingly recognizable in commercial and construction field. Foam concrete is not just light in its weight but also light in cost, as there is no coarse aggregate needed in its production. Application of foam concrete is limited due to the fact that it is not as strong as conventional concrete in terms of strength and rigidness. Therefore, this study is to investigate the potential of foam concrete incorporating with rubber powder of waste tire and admixture as an additive material to improve its strength and workability. Thus, the use of rubber powder in this study could enhance the strength by filling the voids in foam concrete. The amount of rubber powder added as additive in foam concrete is 0%, 5%, 10%, 15% and 20% respectively. The amount of plasticizers used is limited to less than 0.4% to the weight of cement. The mix design was set to achieve density of 1800kg/m3. The workability of foam concrete is decreasing as the percentage of rubber power was increasing. The foam concrete containing 5%of rubber powder has highest compressive strength with value of 20.6 MPa for 7 days water curing and 22.3 MPa for 28 days water curing. Significantly showing an increase of 1.7 MPa. The highest value of tensile strength for both air curing 7 and 28 days are 1.86 MPa and 1.97 MPa also held by 3% of rubber powder mix. As a conclusion the optimum rubber powder content to be used in foam concrete is 5% that gives the highest results in terms of workability and strength.
Utilization of Rubber Powder of Waste Tyres in Foam Concrete
Mehrani Seengar Ali (author) / Bhatti Imtiaz Ali (author) / Bhatti Nabi Bux (author) / Jhatial Ashfaque Ahmed (author) / Lohar Mouzzam Ali (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Investigation on Recycling Application of Waste Rubber Tyres in Concrete
Springer Verlag | 2023
|Use of recycled rubber tyres in concrete
British Library Conference Proceedings | 1993
|Utilization of Crumbs from Discarded Rubber Tyres as Coarse Aggregate in Concrete: A Review
BASE | 2023
|