A platform for research: civil engineering, architecture and urbanism
Detection of Rise Damage by Leaf Folder (Cnaphalocrocis medinalis) Using Unmanned Aerial Vehicle Based Hyperspectral Data
Crop pests and diseases are key factors that damage crop production and threaten food security. Remote sensing techniques may provide an objective and effective alternative for automatic detection of crop pests and diseases. However, ground-based spectroscopic or imaging sensors may be limited in practically guiding the precision application and reduction of pesticide. Therefore, this study developed an unmanned aerial vehicle (UAV)-based remote sensing system to detect leaf folder (Cnaphalocrocis medinalis). Rice canopy reflectance spectra were obtained in the booting growth stage by using the UAV-based hyperspectral remote sensor. Newly developed and published multivariate spectral indices were initially calculated to estimate leaf-roll rates. The newly developed two-band spectral index (R490−R470), three-band spectral index (R400−R470)/(R400−R490), and published spectral index photochemical reflectance index (R550−R531)/(R550+R531) showed good applicability for estimating leaf-roll rates. The newly developed UAV-based micro hyperspectral system had potential in detecting rice stress induced by leaf folder. The newly developed spectral index (R490−R470) and (R400−R470)/(R400−R490) might be recommended as an indicator for estimating leaf-roll rates in the study area, and (R550−R531)/(R550+R531) might serve as a universal spectral index for monitoring leaf folder.
Detection of Rise Damage by Leaf Folder (Cnaphalocrocis medinalis) Using Unmanned Aerial Vehicle Based Hyperspectral Data
Crop pests and diseases are key factors that damage crop production and threaten food security. Remote sensing techniques may provide an objective and effective alternative for automatic detection of crop pests and diseases. However, ground-based spectroscopic or imaging sensors may be limited in practically guiding the precision application and reduction of pesticide. Therefore, this study developed an unmanned aerial vehicle (UAV)-based remote sensing system to detect leaf folder (Cnaphalocrocis medinalis). Rice canopy reflectance spectra were obtained in the booting growth stage by using the UAV-based hyperspectral remote sensor. Newly developed and published multivariate spectral indices were initially calculated to estimate leaf-roll rates. The newly developed two-band spectral index (R490−R470), three-band spectral index (R400−R470)/(R400−R490), and published spectral index photochemical reflectance index (R550−R531)/(R550+R531) showed good applicability for estimating leaf-roll rates. The newly developed UAV-based micro hyperspectral system had potential in detecting rice stress induced by leaf folder. The newly developed spectral index (R490−R470) and (R400−R470)/(R400−R490) might be recommended as an indicator for estimating leaf-roll rates in the study area, and (R550−R531)/(R550+R531) might serve as a universal spectral index for monitoring leaf folder.
Detection of Rise Damage by Leaf Folder (Cnaphalocrocis medinalis) Using Unmanned Aerial Vehicle Based Hyperspectral Data
Tao Liu (author) / Tiezhu Shi (author) / Huan Zhang (author) / Chao Wu (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Bridge related damage quantification using unmanned aerial vehicle imagery
Wiley | 2016
|European Patent Office | 2024
|Unmanned aerial vehicle airport and unmanned aerial vehicle system
European Patent Office | 2020
|