A platform for research: civil engineering, architecture and urbanism
Species Identification of Pinus Pollen Found in Belukha Glacier, Russian Altai Mountains, Using a Whole-Genome Amplification Method
Pollen taxa in sediment samples can be identified based on morphology. However, closely related species do not differ substantially in pollen morphology, and accurate identification is generally limited to genera or families. Because many pollen grains in glaciers contain protoplasm, genetic information obtained from pollen grains should enable the identification of plant taxa at the species level. In the present study, species identification of Pinus pollen grains was attempted using whole-genome amplification (WGA). We used pollen grains extracted from surface snow (depth, 1.8–1.9 m) from the Belukha glacier in the summer of 2003. WGA was performed using a single pollen grain. Some regions of the chloroplast genome were amplified by PCR, and the DNA products were sequenced to identify the pollen grain. Pinus includes approximately 111 recognized species in two subgenera, four sections, and 11 subsections. The tree species Pinus sibirica and P. sylvestris are currently found at the periphery of the glacier. We identified the pollen grains from the Belukha glacier to the level of section or subsection to which P. sibirica and P. sylvestris belong. Moreover, we specifically identified two pollen grains as P. sibirica or P. cembra. Fifteen species, including P. sibirica, were candidates for the remaining pollen grain.
Species Identification of Pinus Pollen Found in Belukha Glacier, Russian Altai Mountains, Using a Whole-Genome Amplification Method
Pollen taxa in sediment samples can be identified based on morphology. However, closely related species do not differ substantially in pollen morphology, and accurate identification is generally limited to genera or families. Because many pollen grains in glaciers contain protoplasm, genetic information obtained from pollen grains should enable the identification of plant taxa at the species level. In the present study, species identification of Pinus pollen grains was attempted using whole-genome amplification (WGA). We used pollen grains extracted from surface snow (depth, 1.8–1.9 m) from the Belukha glacier in the summer of 2003. WGA was performed using a single pollen grain. Some regions of the chloroplast genome were amplified by PCR, and the DNA products were sequenced to identify the pollen grain. Pinus includes approximately 111 recognized species in two subgenera, four sections, and 11 subsections. The tree species Pinus sibirica and P. sylvestris are currently found at the periphery of the glacier. We identified the pollen grains from the Belukha glacier to the level of section or subsection to which P. sibirica and P. sylvestris belong. Moreover, we specifically identified two pollen grains as P. sibirica or P. cembra. Fifteen species, including P. sibirica, were candidates for the remaining pollen grain.
Species Identification of Pinus Pollen Found in Belukha Glacier, Russian Altai Mountains, Using a Whole-Genome Amplification Method
Fumio Nakazawa (author) / Yoshihisa Suyama (author) / Satoshi Imura (author) / Hideaki Motoyama (author)
2018
Article (Journal)
Electronic Resource
Unknown
pollen , DNA , glacier , Pinus , Altai , pollen source , Plant ecology , QK900-989
Metadata by DOAJ is licensed under ​CC BY-SA 1.0
IOP Institute of Physics | 2013
|IOP Institute of Physics | 2012
|