A platform for research: civil engineering, architecture and urbanism
Prediction of Suitable Distribution of a Critically Endangered Plant Glyptostrobus pensilis
Glyptostrobus pensilis is a critically endangered living fossil plant species of the Mesozoic era, with high scientific research and economic value. The aim of this study was to assess the impact of climate change on the potential habitat area of G. pensilis in East Asia. The MaxEnt (maximum entropy) model optimized by the ENMeval data package was used to simulate the potential distribution habitats of G. pensilis since the last interglacial period (LIG, 120–140 ka). The results showed that the optimized MaxEnt model has a high prediction accuracy with the area under the receiver operating characteristic curve (AUC) of 0.9843 ± 0.005. The Current highly suitable habitats were found in the Northeast Jiangxi, Eastern Fujian and Eastern Guangdong; the main climatic factors affecting the geographic distribution of G. pensilis are temperature and precipitation, with precipitation as the temperature factor. The minimum temperature of coldest month (Bio6) may be the key factor restricting the northward distribution of G. pensilis; during the LIG, it contracted greatly in the highly suitable habitat area. Mean Diurnal Range (Bio2), Minimum Temperature of Coldest Month (Bio6), Annual Precipitation (Bio12) and Mean Temperature of Driest Quarter (Bio9) may be important climatic factors causing the changes in geographic distribution. In the next four periods, the suitable areas all migrated southward. Except for the RCP2.6-2070s, the highly suitable areas in the other three periods showed varying degrees of shrinkage. The results will provide a theoretical basis for the management and resource protection of G. pensilis.
Prediction of Suitable Distribution of a Critically Endangered Plant Glyptostrobus pensilis
Glyptostrobus pensilis is a critically endangered living fossil plant species of the Mesozoic era, with high scientific research and economic value. The aim of this study was to assess the impact of climate change on the potential habitat area of G. pensilis in East Asia. The MaxEnt (maximum entropy) model optimized by the ENMeval data package was used to simulate the potential distribution habitats of G. pensilis since the last interglacial period (LIG, 120–140 ka). The results showed that the optimized MaxEnt model has a high prediction accuracy with the area under the receiver operating characteristic curve (AUC) of 0.9843 ± 0.005. The Current highly suitable habitats were found in the Northeast Jiangxi, Eastern Fujian and Eastern Guangdong; the main climatic factors affecting the geographic distribution of G. pensilis are temperature and precipitation, with precipitation as the temperature factor. The minimum temperature of coldest month (Bio6) may be the key factor restricting the northward distribution of G. pensilis; during the LIG, it contracted greatly in the highly suitable habitat area. Mean Diurnal Range (Bio2), Minimum Temperature of Coldest Month (Bio6), Annual Precipitation (Bio12) and Mean Temperature of Driest Quarter (Bio9) may be important climatic factors causing the changes in geographic distribution. In the next four periods, the suitable areas all migrated southward. Except for the RCP2.6-2070s, the highly suitable areas in the other three periods showed varying degrees of shrinkage. The results will provide a theoretical basis for the management and resource protection of G. pensilis.
Prediction of Suitable Distribution of a Critically Endangered Plant Glyptostrobus pensilis
Xingzhuang Ye (author) / Mingzhu Zhang (author) / Qianyue Yang (author) / Liqi Ye (author) / Yipeng Liu (author) / Guofang Zhang (author) / Shipin Chen (author) / Wenfeng Lai (author) / Guowei Wen (author) / Shiqun Zheng (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Ants in critically endangered xeric alluvial biotopes: Indication and conservation strategy
Online Contents | 2002
|