A platform for research: civil engineering, architecture and urbanism
Combined Annoyance Assessment of Ship Structural Vibration and Ambient Noise
Background: Noise and vibration are environmental pollutants that endanger people’s productivity and sleep quality in ships, but the coupled effect in ship cabins has not been studied. This study aimed to assess the coupled effect of noise and vibration in ship cabins and propose a comfortable range of noise and vibration. Methods: Three different accommodation cabins were chosen to measure noise and vibration levels and investigate their satisfaction. A revised model combining exponential membership functions was proposed to reveal the relationship between noise and vibration level and its response. The annoyance rate from greater to lesser was classified as A, B, C, D, and E. Results: All measurement levels were satisfied with the acceptance ranges of standards. While subjects felt high annoyance in the crew lounge, subjects in passenger and dining cabins felt slightly annoyed. Conclusions: By combining measurements and subjective investigations, the prediction performance of the revised annoyance model was verified. The noise level reached 57.5 dB(A), and the acoustic condition had a greater impact on subjective feelings than the vibration level. For grade E demands, the vibration level should be lower than 0.095 m/s2, and the noise level should be less than 54 dB(A).
Combined Annoyance Assessment of Ship Structural Vibration and Ambient Noise
Background: Noise and vibration are environmental pollutants that endanger people’s productivity and sleep quality in ships, but the coupled effect in ship cabins has not been studied. This study aimed to assess the coupled effect of noise and vibration in ship cabins and propose a comfortable range of noise and vibration. Methods: Three different accommodation cabins were chosen to measure noise and vibration levels and investigate their satisfaction. A revised model combining exponential membership functions was proposed to reveal the relationship between noise and vibration level and its response. The annoyance rate from greater to lesser was classified as A, B, C, D, and E. Results: All measurement levels were satisfied with the acceptance ranges of standards. While subjects felt high annoyance in the crew lounge, subjects in passenger and dining cabins felt slightly annoyed. Conclusions: By combining measurements and subjective investigations, the prediction performance of the revised annoyance model was verified. The noise level reached 57.5 dB(A), and the acoustic condition had a greater impact on subjective feelings than the vibration level. For grade E demands, the vibration level should be lower than 0.095 m/s2, and the noise level should be less than 54 dB(A).
Combined Annoyance Assessment of Ship Structural Vibration and Ambient Noise
Hongmin Liu (author) / Xincheng Lin (author) / Zhihao Gong (author) / Jieyuan Shi (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Annoyance caused by railway vibration and noise in buildings
Elsevier | 1991
Effects of acoustic characteristics of combined construction noise on annoyance
Online Contents | 2015
|Effects of acoustic characteristics of combined construction noise on annoyance
British Library Online Contents | 2015
|