A platform for research: civil engineering, architecture and urbanism
The Application of Percolation Theory in Modeling the Vertical Distribution of Soil Organic Carbon in the Changbai Mountains
A power-law formulation rooted in percolation theory has proven effective in depicting the vertical distribution of soil organic carbon (SOC) in temperate forest subsoils. While the model suggests the solute as the primary factor distributing SOC, this may not hold true in the surface soil in which roots contribute significantly to the SOC. This study in the Changbai Mountains Mixed Forests ecoregion (CMMF) evaluates the SOC profiles in three forests to assess the model’s efficacy throughout the soil column. Prediction of the SOC profile based on the regional average values was also assessed using field data. The observed scaling aligned well with predictions in mixed broadleaved and broadleaved Korean pine mixed forests, but disparities emerged in birch forest, possibly due to waterlogging. The predicted SOC levels correlate strongly with the field data and align well with the normalized average SOC levels. The findings suggest that the model remains applicable in the CMMF when considering root-derived carbon. However, the hindrance of solute transport may have a greater impact than roots do. The spatial heterogeneity of the SOC means that a single predicted SOC value at a specific depth may not fit all sites, but the overall agreement highlights the potential of the model for predicting the average or representative SOC profiles, which could further aid in regional-scale carbon stock estimation.
The Application of Percolation Theory in Modeling the Vertical Distribution of Soil Organic Carbon in the Changbai Mountains
A power-law formulation rooted in percolation theory has proven effective in depicting the vertical distribution of soil organic carbon (SOC) in temperate forest subsoils. While the model suggests the solute as the primary factor distributing SOC, this may not hold true in the surface soil in which roots contribute significantly to the SOC. This study in the Changbai Mountains Mixed Forests ecoregion (CMMF) evaluates the SOC profiles in three forests to assess the model’s efficacy throughout the soil column. Prediction of the SOC profile based on the regional average values was also assessed using field data. The observed scaling aligned well with predictions in mixed broadleaved and broadleaved Korean pine mixed forests, but disparities emerged in birch forest, possibly due to waterlogging. The predicted SOC levels correlate strongly with the field data and align well with the normalized average SOC levels. The findings suggest that the model remains applicable in the CMMF when considering root-derived carbon. However, the hindrance of solute transport may have a greater impact than roots do. The spatial heterogeneity of the SOC means that a single predicted SOC value at a specific depth may not fit all sites, but the overall agreement highlights the potential of the model for predicting the average or representative SOC profiles, which could further aid in regional-scale carbon stock estimation.
The Application of Percolation Theory in Modeling the Vertical Distribution of Soil Organic Carbon in the Changbai Mountains
Fang Yu (author) / Chunnan Fan (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Potential Distribution Shifts of Plant Species under Climate Change in Changbai Mountains, China
DOAJ | 2019
|Topographic Controls on Vegetation Changes in Alpine Tundra of the Changbai Mountains
DOAJ | 2018
|