A platform for research: civil engineering, architecture and urbanism
Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method
The sol-gel technique has many advantages over the other mechanism for synthesizing metal oxide nanoparticles such as being simple, cheap and having low temperature and pressure. Utilization of waste materials as a precursor for synthesis makes the whole process cheaper, green and sustainable. Calcium Oxide nanoparticles have been synthesized from eggshell through the sol-gel method. Raw eggshell was dissolved by HCl to form CaCl2 solution, adding NaOH to the solution dropwise to agitate Ca (OH)2 gel and finally drying the gel at 900 °C for 1 h. The synthesized nanoparticle was characterized by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), X-Ray fluorescence (XRF) and X-ray diffraction (XRD). The FTIR and XRD results have clearly depicted the synthesis of calcium oxide from eggshell, which is mainly composed of calcium carbonate. The FE-SEM images of calcium oxide nanoparticles showed that the particles were almost spherical in morphology. The particle size of the nanoparticles was in the range 50 nm–198 nm. Therefore, waste eggshell can be considered as a promising resource of calcium for application of versatile fields.
Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method
The sol-gel technique has many advantages over the other mechanism for synthesizing metal oxide nanoparticles such as being simple, cheap and having low temperature and pressure. Utilization of waste materials as a precursor for synthesis makes the whole process cheaper, green and sustainable. Calcium Oxide nanoparticles have been synthesized from eggshell through the sol-gel method. Raw eggshell was dissolved by HCl to form CaCl2 solution, adding NaOH to the solution dropwise to agitate Ca (OH)2 gel and finally drying the gel at 900 °C for 1 h. The synthesized nanoparticle was characterized by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), X-Ray fluorescence (XRF) and X-ray diffraction (XRD). The FTIR and XRD results have clearly depicted the synthesis of calcium oxide from eggshell, which is mainly composed of calcium carbonate. The FE-SEM images of calcium oxide nanoparticles showed that the particles were almost spherical in morphology. The particle size of the nanoparticles was in the range 50 nm–198 nm. Therefore, waste eggshell can be considered as a promising resource of calcium for application of versatile fields.
Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method
Lulit Habte (author) / Natnael Shiferaw (author) / Dure Mulatu (author) / Thriveni Thenepalli (author) / Ramakrishna Chilakala (author) / Ji Whan Ahn (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Examination of Calcium-Phosphates Prepared from Eggshell
British Library Online Contents | 2007
|Bone Formation with Nano-Hydroxyapatite from Eggshell
British Library Online Contents | 2013
|