A platform for research: civil engineering, architecture and urbanism
Research on Ecological Driving Following Strategy Based on Deep Reinforcement Learning
Traditional car-following models usually prioritize minimizing inter-vehicle distance error when tracking the preceding vehicle, often neglecting crucial factors like driving economy and passenger ride comfort. To address this limitation, this paper integrates the concept of eco-driving and formulates a multi-objective function that encompasses economy, comfort, and safety. A novel eco-driving car-following strategy based on the deep deterministic policy gradient (DDPG) is proposed, employing the vehicle’s state, including data from the preceding vehicle and the ego vehicle, as the state space, and the desired time headway from the intelligent driver model (IDM) as the action space. The DDPG agent is trained to dynamically adjust the following vehicle’s speed in real-time, striking a balance between driving economy, comfort, and safety. The results reveal that the proposed DDPG-based IDM model significantly enhances comfort, safety, and economy when compared to the fixed-time headway IDM model, achieving an economy improvement of 2.66% along with enhanced comfort. Moreover, the proposed approach maintains a relatively stable following distance under medium-speed conditions, ensuring driving safety. Additionally, the comprehensive performance of the proposed method is analyzed under three typical scenarios, confirming its generalization capability. The DDPG-enhanced IDM car-following model aligns with eco-driving principles, offering novel insights for advancing IDM-based car-following models.
Research on Ecological Driving Following Strategy Based on Deep Reinforcement Learning
Traditional car-following models usually prioritize minimizing inter-vehicle distance error when tracking the preceding vehicle, often neglecting crucial factors like driving economy and passenger ride comfort. To address this limitation, this paper integrates the concept of eco-driving and formulates a multi-objective function that encompasses economy, comfort, and safety. A novel eco-driving car-following strategy based on the deep deterministic policy gradient (DDPG) is proposed, employing the vehicle’s state, including data from the preceding vehicle and the ego vehicle, as the state space, and the desired time headway from the intelligent driver model (IDM) as the action space. The DDPG agent is trained to dynamically adjust the following vehicle’s speed in real-time, striking a balance between driving economy, comfort, and safety. The results reveal that the proposed DDPG-based IDM model significantly enhances comfort, safety, and economy when compared to the fixed-time headway IDM model, achieving an economy improvement of 2.66% along with enhanced comfort. Moreover, the proposed approach maintains a relatively stable following distance under medium-speed conditions, ensuring driving safety. Additionally, the comprehensive performance of the proposed method is analyzed under three typical scenarios, confirming its generalization capability. The DDPG-enhanced IDM car-following model aligns with eco-driving principles, offering novel insights for advancing IDM-based car-following models.
Research on Ecological Driving Following Strategy Based on Deep Reinforcement Learning
Weiqi Zhou (author) / Nanchi Wu (author) / Qingchao Liu (author) / Chaofeng Pan (author) / Long Chen (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Improving the Performance of Autonomous Driving through Deep Reinforcement Learning
DOAJ | 2023
|Deep Reinforcement Learning Car-Following Model Considering Longitudinal and Lateral Control
DOAJ | 2022
|Full-rotation pile driving barge control method and system based on deep reinforcement learning
European Patent Office | 2025
|