A platform for research: civil engineering, architecture and urbanism
Analysis of Train-Induced Vibration Transmission and Distribution Characteristics in Double-Layer Metro Depot
When urban subway trains run in the depot, they can cause vibration and noise, which affects the safety and reliability of the structure under the track, and these transmits to the over-track buildings and often trouble passengers and staff. This paper established a coupling model of a track–metro depot–over-track building based on the structural finite element method and analyzed vibration response and then summarized the vibration transmission and distribution characteristics as the speed changes. The results show that, at train speeds of 20 km/h and 5 km/h, the Z-vibration level difference between the two at the rail is nearly 20 dB, and the vibration can be reduced by 17.9% at most. The difference between the two on the 9 m platform is 6–8 dB and 5–14 dB on the 16 m platform, and the vibration can be reduced by 17.7% at most. The difference between the two in the over-track building is 3–11 dB, and the vibration can be reduced by 13.0% at most. The vibration has the highest energy within a range of 2 m radiating from the center of the line, reaching a maximum of 118.5 dB. The vibration shows a ring-shaped distribution, and the ring-shaped distribution is more pronounced as the train speed increases. In the horizontal direction of the track line, the vibration energy distribution is within a range of −4 m to 11.5 m from the track line. In the longitudinal direction of the track line, the ring-shaped distribution of vibration energy exhibits a periodic pattern. The results provide a reference for the vibration control of the over-track buildings.
Analysis of Train-Induced Vibration Transmission and Distribution Characteristics in Double-Layer Metro Depot
When urban subway trains run in the depot, they can cause vibration and noise, which affects the safety and reliability of the structure under the track, and these transmits to the over-track buildings and often trouble passengers and staff. This paper established a coupling model of a track–metro depot–over-track building based on the structural finite element method and analyzed vibration response and then summarized the vibration transmission and distribution characteristics as the speed changes. The results show that, at train speeds of 20 km/h and 5 km/h, the Z-vibration level difference between the two at the rail is nearly 20 dB, and the vibration can be reduced by 17.9% at most. The difference between the two on the 9 m platform is 6–8 dB and 5–14 dB on the 16 m platform, and the vibration can be reduced by 17.7% at most. The difference between the two in the over-track building is 3–11 dB, and the vibration can be reduced by 13.0% at most. The vibration has the highest energy within a range of 2 m radiating from the center of the line, reaching a maximum of 118.5 dB. The vibration shows a ring-shaped distribution, and the ring-shaped distribution is more pronounced as the train speed increases. In the horizontal direction of the track line, the vibration energy distribution is within a range of −4 m to 11.5 m from the track line. In the longitudinal direction of the track line, the ring-shaped distribution of vibration energy exhibits a periodic pattern. The results provide a reference for the vibration control of the over-track buildings.
Analysis of Train-Induced Vibration Transmission and Distribution Characteristics in Double-Layer Metro Depot
Xinwei Luo (author) / Xuan Jiang (author) / Qingsong Feng (author) / Wenlin Hu (author) / Qinming Tu (author) / Yanming Chen (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Train-Induced Vibration Prediction and Control of a Metro Depot and Over-Track Buildings
DOAJ | 2023
|Field Test and Numerical Study of Train-Induced Vibration of Over-Track Buildings Above Metro Depot
DOAJ | 2024
|Field Test and Numerical Study of Train-Induced Vibration of Over-Track Buildings Above Metro Depot
Springer Verlag | 2024
|