A platform for research: civil engineering, architecture and urbanism
Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems
This paper evaluates life cycle greenhouse gas (GHG) emissions from the use of different biomass feedstock categories (agriculture residues, dedicated energy crops, forestry, industry, parks and gardens, wastes) independently on biomass-only (biomass as a standalone fuel) and cofiring (biomass used in combination with coal) electricity generation systems. The statistical evaluation of the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh) for biomass electricity generation systems was based on the review of 19 life cycle assessment studies (representing 66 biomass cases). The mean life cycle GHG emissions resulting from the use of agriculture residues (N = 4), dedicated energy crops (N = 19), forestry (N = 6), industry (N = 4), and wastes (N = 2) in biomass-only electricity generation systems are 291.25 gCO2e/kWh, 208.41 gCO2e/kWh, 43 gCO2e/kWh, 45.93 gCO2e/kWh, and 1731.36 gCO2e/kWh, respectively. The mean life cycle GHG emissions for cofiring electricity generation systems using agriculture residues (N = 10), dedicated energy crops (N = 9), forestry (N = 9), industry (N = 2), and parks and gardens (N = 1) are 1039.92 gCO2e/kWh, 1001.38 gCO2e/kWh, 961.45 gCO2e/kWh, 926.1 gCO2e/kWh, and 1065.92 gCO2e/kWh, respectively. Forestry and industry (avoiding the impacts of biomass production and emissions from waste management) contribute the least amount of GHGs, irrespective of the biomass electricity generation system.
Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems
This paper evaluates life cycle greenhouse gas (GHG) emissions from the use of different biomass feedstock categories (agriculture residues, dedicated energy crops, forestry, industry, parks and gardens, wastes) independently on biomass-only (biomass as a standalone fuel) and cofiring (biomass used in combination with coal) electricity generation systems. The statistical evaluation of the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh) for biomass electricity generation systems was based on the review of 19 life cycle assessment studies (representing 66 biomass cases). The mean life cycle GHG emissions resulting from the use of agriculture residues (N = 4), dedicated energy crops (N = 19), forestry (N = 6), industry (N = 4), and wastes (N = 2) in biomass-only electricity generation systems are 291.25 gCO2e/kWh, 208.41 gCO2e/kWh, 43 gCO2e/kWh, 45.93 gCO2e/kWh, and 1731.36 gCO2e/kWh, respectively. The mean life cycle GHG emissions for cofiring electricity generation systems using agriculture residues (N = 10), dedicated energy crops (N = 9), forestry (N = 9), industry (N = 2), and parks and gardens (N = 1) are 1039.92 gCO2e/kWh, 1001.38 gCO2e/kWh, 961.45 gCO2e/kWh, 926.1 gCO2e/kWh, and 1065.92 gCO2e/kWh, respectively. Forestry and industry (avoiding the impacts of biomass production and emissions from waste management) contribute the least amount of GHGs, irrespective of the biomass electricity generation system.
Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems
Akhil Kadiyala (author) / Raghava Kommalapati (author) / Ziaul Huque (author)
2016
Article (Journal)
Electronic Resource
Unknown
life cycle assessment , greenhouse gas emissions , biomass , biomass-only , cofiring , biomass feedstock , agriculture residue , dedicated energy crop , forestry , industry , parks and gardens , waste , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Life cycle greenhouse gas emissions from geothermal electricity production
American Institute of Physics | 2013
|Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems
DOAJ | 2016
|Life cycle greenhouse gas emissions of Marcellus shale gas
IOP Institute of Physics | 2011
|