A platform for research: civil engineering, architecture and urbanism
A Reliability-Based Design of Africa-Birch Timber-Reinforced Concrete Beams
This study investigates the reliability-based design of African-Birch (AB) timber-reinforced concrete beams. This study investigated Some of the physical and engineering properties of the constituent materials for the reinforced concrete beams were tested and preparing the reinforcement in four different composition and configurations (steel-steel, Steel- AB, AB-Steel, and AB-AB) of the beams were prepared, cast and cured for varying durations (3, 7, 14, 21, and 28 days), and the concrete was tested for its flexural strength and deflection and consequently reliability analysis (in terms of flexural strength and deflection) of all the beam configurations using First Order Reliability Analysis-5 (FORM5) to assess the beam performance was carried out. The flexural strength and deflection analysis reveals Steel-AB outperforming other sections and was found to be optimal under various loading conditions. For flexure, Steel-AB achieved a safety index (β) of 1.98 and probability of failure (Pf) of 0.0238 at a span length of 10,000mm and effective depth of 400mm. Similarly, for deflection, Steel-AB demonstrated a safety index (β) of 1.786 and probability of failure (Pf) of 0.037 at a span length of 2500mm. This study demonstrates that African-birch timber is a viable and sustainable alternative to traditional steel reinforcement for structural applications, particularly for medium span and depth beam-configurations.
A Reliability-Based Design of Africa-Birch Timber-Reinforced Concrete Beams
This study investigates the reliability-based design of African-Birch (AB) timber-reinforced concrete beams. This study investigated Some of the physical and engineering properties of the constituent materials for the reinforced concrete beams were tested and preparing the reinforcement in four different composition and configurations (steel-steel, Steel- AB, AB-Steel, and AB-AB) of the beams were prepared, cast and cured for varying durations (3, 7, 14, 21, and 28 days), and the concrete was tested for its flexural strength and deflection and consequently reliability analysis (in terms of flexural strength and deflection) of all the beam configurations using First Order Reliability Analysis-5 (FORM5) to assess the beam performance was carried out. The flexural strength and deflection analysis reveals Steel-AB outperforming other sections and was found to be optimal under various loading conditions. For flexure, Steel-AB achieved a safety index (β) of 1.98 and probability of failure (Pf) of 0.0238 at a span length of 10,000mm and effective depth of 400mm. Similarly, for deflection, Steel-AB demonstrated a safety index (β) of 1.786 and probability of failure (Pf) of 0.037 at a span length of 2500mm. This study demonstrates that African-birch timber is a viable and sustainable alternative to traditional steel reinforcement for structural applications, particularly for medium span and depth beam-configurations.
A Reliability-Based Design of Africa-Birch Timber-Reinforced Concrete Beams
Alhassan Aliyu Abdulrazaq (author) / Uwemedimo Nyong Wilson (author) / John Engbonye Sani (author) / Ibrahim Rabiu (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Reliability-based design recommendations for FRP-reinforced concrete beams
Online Contents | 2013
|Timber-concrete composite beams
UB Braunschweig | 1999
|Timber-concrete composite beams
TIBKAT | 1999
|