A platform for research: civil engineering, architecture and urbanism
Occurrence and Reduction of Shiga Toxin-Producing Escherichia coli in Wastewaters in the Kathmandu Valley, Nepal
Inadequately treated effluents discharged from wastewater treatment plants (WWTPs) severely affect the environment and the surrounding population. This study analyzed the presence of the Shiga toxin-producing Escherichia coli (STEC) genes, stx1, and stx2, and the E. coli gene, sfmD, in municipal WWTP A (n = 11) and B (n = 11) where the reductions were also evaluated; hospitals (n = 17), sewage treatment plants (STPs) (n = 4) and non-functional WWTPs (not-working WWTPs) (n = 5) in the Kathmandu Valley, Nepal. The sfmD gene was detected in 100% of the samples in WWTPs, hospitals, and not-working WWTPs and 50% of STP samples. The highest detection of stx1 and stx2 was shown in the WWTP influents, followed by WWTP effluents, not-working WWTP wastewater, hospital wastewater, and STP wastewater. Log10 reduction values of sfmD, stx1, and stx2 in WWTP A were 1.7 log10, 1.7 log10, 1.4 log10, whereas those in WWTP B were 0.5 log10, 0.6 log10, 0.5 log10, respectively, suggesting the ineffective treatment of STEC in the wastewater in the Kathmandu Valley. The high concentrations of the stx genes in the wastewaters suggest the increasing presence of aggressive STEC in the Kathmandu Valley, which should be a major public health concern.
Occurrence and Reduction of Shiga Toxin-Producing Escherichia coli in Wastewaters in the Kathmandu Valley, Nepal
Inadequately treated effluents discharged from wastewater treatment plants (WWTPs) severely affect the environment and the surrounding population. This study analyzed the presence of the Shiga toxin-producing Escherichia coli (STEC) genes, stx1, and stx2, and the E. coli gene, sfmD, in municipal WWTP A (n = 11) and B (n = 11) where the reductions were also evaluated; hospitals (n = 17), sewage treatment plants (STPs) (n = 4) and non-functional WWTPs (not-working WWTPs) (n = 5) in the Kathmandu Valley, Nepal. The sfmD gene was detected in 100% of the samples in WWTPs, hospitals, and not-working WWTPs and 50% of STP samples. The highest detection of stx1 and stx2 was shown in the WWTP influents, followed by WWTP effluents, not-working WWTP wastewater, hospital wastewater, and STP wastewater. Log10 reduction values of sfmD, stx1, and stx2 in WWTP A were 1.7 log10, 1.7 log10, 1.4 log10, whereas those in WWTP B were 0.5 log10, 0.6 log10, 0.5 log10, respectively, suggesting the ineffective treatment of STEC in the wastewater in the Kathmandu Valley. The high concentrations of the stx genes in the wastewaters suggest the increasing presence of aggressive STEC in the Kathmandu Valley, which should be a major public health concern.
Occurrence and Reduction of Shiga Toxin-Producing Escherichia coli in Wastewaters in the Kathmandu Valley, Nepal
Niva Sthapit (author) / Bikash Malla (author) / Sarmila Tandukar (author) / Rajani Ghaju Shrestha (author) / Ocean Thakali (author) / Jeevan B. Sherchand (author) / Eiji Haramoto (author) / Futaba Kazama (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2018
Informal Sector Towards Urban Sustainability in Kathmandu Valley, Nepal
Springer Verlag | 2025
|Geotechnical Characterization of Lacustrine Material of Kathmandu Valley, Nepal
Springer Verlag | 2025
|Scenario based urban growth allocation in Kathmandu Valley, Nepal
Online Contents | 2012
|