A platform for research: civil engineering, architecture and urbanism
Dynamic Comprehensive Benefit Evaluation of the Transnational Power Grid Interconnection Project Based on Combination Weighting and TOPSIS Grey Projection Method
With the rapid development of the global economy, the interconnection of power grids has become an objective law and a trend of the power industry development. The implementation of power grid interconnection projects, especially transnational power grid interconnection projects, will bring us substantial benefits. To demonstrate these benefits comprehensively, we designed a comprehensive evaluation index system with multiple international engineering characteristics. The index system takes the influencing factors of economic, social, environmental and technical benefits into account. In order to improve the rigidity and power of weight determination, we proposed the least squares method which combines the order relation method and the factor analysis method. Furthermore, the limitation of the one-way evaluation was effectively overcome by combining TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), grey relation analysis method and vector projection method. In addition, we adjusted the potential impact of the time on evaluation by using the quadratic weighted algorithm, so that we can dynamically evaluate the comprehensive benefits. Finally, we verified the established index system and evaluation model through an example of eight different investment plans of a transnational high voltage direct current (HVDC) transmission project. Altogether, results from this paper will provide a guidance reference and decision support for the grid corporation to invest in transnational power grid interconnection projects.
Dynamic Comprehensive Benefit Evaluation of the Transnational Power Grid Interconnection Project Based on Combination Weighting and TOPSIS Grey Projection Method
With the rapid development of the global economy, the interconnection of power grids has become an objective law and a trend of the power industry development. The implementation of power grid interconnection projects, especially transnational power grid interconnection projects, will bring us substantial benefits. To demonstrate these benefits comprehensively, we designed a comprehensive evaluation index system with multiple international engineering characteristics. The index system takes the influencing factors of economic, social, environmental and technical benefits into account. In order to improve the rigidity and power of weight determination, we proposed the least squares method which combines the order relation method and the factor analysis method. Furthermore, the limitation of the one-way evaluation was effectively overcome by combining TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), grey relation analysis method and vector projection method. In addition, we adjusted the potential impact of the time on evaluation by using the quadratic weighted algorithm, so that we can dynamically evaluate the comprehensive benefits. Finally, we verified the established index system and evaluation model through an example of eight different investment plans of a transnational high voltage direct current (HVDC) transmission project. Altogether, results from this paper will provide a guidance reference and decision support for the grid corporation to invest in transnational power grid interconnection projects.
Dynamic Comprehensive Benefit Evaluation of the Transnational Power Grid Interconnection Project Based on Combination Weighting and TOPSIS Grey Projection Method
Jinying Li (author) / Jiaming Xu (author) / Xin Tan (author)
2018
Article (Journal)
Electronic Resource
Unknown
transnational power grid interconnection project , comprehensive benefit evaluation , order relations method , factor analysis method , TOPSIS grey relation projection method , quadratic weighted algorithm based on temporal operator , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2022
|Risk Evaluation of Qinghai–Tibet Power Grid Interconnection Project for Sustainability
DOAJ | 2016
|