A platform for research: civil engineering, architecture and urbanism
Effect of Seasonal Variation on Leaf Cuticular Waxes’ Composition in the Mediterranean Cork Oak (Quercus suber L.)
Quercus suber L. (cork oak) leaves were analyzed along one annual cycle for cuticular wax content and chemical composition. This species, well adapted to the long dry summer conditions prevailing in the Mediterranean, has a leaf life span of about one year. The cuticular wax revealed a seasonal variation with a coverage increase from the newly expanded leaves (115.7 µg/cm2 in spring) to a maximum value in fully expanded leaves (235.6 µg/cm2 after summer). Triterpenoids dominated the wax composition throughout the leaf life cycle, corresponding in young leaves to 26 µg/cm2 (22.6% of the total wax) and 116.0 µg/cm2 (49% of the total wax) in mature leaves, with lupeol constituting about 70% of this fraction. The total aliphatic compounds increased from 39 µg/cm2 (young leaves) to 71 µg/cm2 (mature leaves) and then decreased to 22 µg/cm2 and slightly increased during the remaining period. The major aliphatic compounds were fatty acids, mostly with C16 (hexadecanoic acid) and C28 (octacosanoic acid) chain lengths. Since pentacyclic triterpenoids are located almost exclusively within the cutin matrix (intracuticular wax), the increase in the cyclic-to-acyclic component ratio after summer shows an extensive deposition of intracuticular waxes in association with the establishment of mechanical and thermal stability and of water barrier properties in the mature leaf cuticle.
Effect of Seasonal Variation on Leaf Cuticular Waxes’ Composition in the Mediterranean Cork Oak (Quercus suber L.)
Quercus suber L. (cork oak) leaves were analyzed along one annual cycle for cuticular wax content and chemical composition. This species, well adapted to the long dry summer conditions prevailing in the Mediterranean, has a leaf life span of about one year. The cuticular wax revealed a seasonal variation with a coverage increase from the newly expanded leaves (115.7 µg/cm2 in spring) to a maximum value in fully expanded leaves (235.6 µg/cm2 after summer). Triterpenoids dominated the wax composition throughout the leaf life cycle, corresponding in young leaves to 26 µg/cm2 (22.6% of the total wax) and 116.0 µg/cm2 (49% of the total wax) in mature leaves, with lupeol constituting about 70% of this fraction. The total aliphatic compounds increased from 39 µg/cm2 (young leaves) to 71 µg/cm2 (mature leaves) and then decreased to 22 µg/cm2 and slightly increased during the remaining period. The major aliphatic compounds were fatty acids, mostly with C16 (hexadecanoic acid) and C28 (octacosanoic acid) chain lengths. Since pentacyclic triterpenoids are located almost exclusively within the cutin matrix (intracuticular wax), the increase in the cyclic-to-acyclic component ratio after summer shows an extensive deposition of intracuticular waxes in association with the establishment of mechanical and thermal stability and of water barrier properties in the mature leaf cuticle.
Effect of Seasonal Variation on Leaf Cuticular Waxes’ Composition in the Mediterranean Cork Oak (Quercus suber L.)
Rita Simões (author) / Isabel Miranda (author) / Helena Pereira (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Waxes composition of Quercus suber reproduction cork from different Spanish provenances
British Library Online Contents | 1999
|British Library Online Contents | 1999
|Radial variation of vessel size and distribution in cork oak wood (Quercus suber L.)
British Library Online Contents | 2007
|