A platform for research: civil engineering, architecture and urbanism
Study on the Performance of Composite Adsorption of Cu2+ by Chitosan/β-Cyclodextrin Cross-Linked Zeolite
In order to remove Cu2+ from wastewater, a kind of microsphere adsorbent (SCDO) with high efficiency for Cu2+ adsorption was prepared by the microdrop condensation method, where chitosan (CTS) and sodium alginate (SA) were used as the matrix to crosslink β-cyclodextrin (β-CD) and zeolite (Zeo). The structure and properties of SCDO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Upon that, the adsorption performance of SCDO for Cu2+ was studied, in which the effects of pH, initial concentration, dosage, adsorption time and temperature were investigated. The results showed that the removal rate of Cu2+ reached 97.08%, and the maximum adsorption capacity was 24.32 mg/g with the temperature at 30 °C, the dosage of SCDO at 12 g/L, the initial concentration of Cu2+ at 100 mg/L, the pH of the solution at 6.0 and the adsorption time at 120 min, respectively. The adsorption process of Cu2+ by SCDO occurred in accordance with quasi-second-order kinetics model and Langmuir adsorption isotherm. After four repeats of continuous adsorption and desorption, the regenerative removal rate of Cu2+ could still reach 84.28%, which indicated that SCDO had outstanding reusability.
Study on the Performance of Composite Adsorption of Cu2+ by Chitosan/β-Cyclodextrin Cross-Linked Zeolite
In order to remove Cu2+ from wastewater, a kind of microsphere adsorbent (SCDO) with high efficiency for Cu2+ adsorption was prepared by the microdrop condensation method, where chitosan (CTS) and sodium alginate (SA) were used as the matrix to crosslink β-cyclodextrin (β-CD) and zeolite (Zeo). The structure and properties of SCDO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Upon that, the adsorption performance of SCDO for Cu2+ was studied, in which the effects of pH, initial concentration, dosage, adsorption time and temperature were investigated. The results showed that the removal rate of Cu2+ reached 97.08%, and the maximum adsorption capacity was 24.32 mg/g with the temperature at 30 °C, the dosage of SCDO at 12 g/L, the initial concentration of Cu2+ at 100 mg/L, the pH of the solution at 6.0 and the adsorption time at 120 min, respectively. The adsorption process of Cu2+ by SCDO occurred in accordance with quasi-second-order kinetics model and Langmuir adsorption isotherm. After four repeats of continuous adsorption and desorption, the regenerative removal rate of Cu2+ could still reach 84.28%, which indicated that SCDO had outstanding reusability.
Study on the Performance of Composite Adsorption of Cu2+ by Chitosan/β-Cyclodextrin Cross-Linked Zeolite
Qiuqiu Xiong (author) / Fenge Zhang (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
The Adsorption of Copper Ions Using Cyclodextrin Cross-Linked Magnetic Chitosan Microsphere
British Library Conference Proceedings | 2012
|Protonated Cross-linked Chitosan Adsorption of Amido Black 10B from Aqueous Solutions
British Library Online Contents | 2012
|British Library Online Contents | 2016
|British Library Online Contents | 2016
|Thermomechanical characterisation of cross-linked β-cyclodextrin polyether binders
British Library Online Contents | 2019
|