A platform for research: civil engineering, architecture and urbanism
Release, transformation, and risk factors of polybrominated diphenyl ethers from landfills to the surrounding environments: A review
Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants when added to various products. When these products reach their end of life, a large amount of domestic waste containing PBDEs enters the landfills. Given their weak chemical bonds, they are easily affected by physical, chemical, and biological processes. These processes result in their release and the subsequent contamination of the surrounding soil, groundwater, and atmosphere, causing harm to humans and ecosystems. However, despite the progress made in the research of PBDEs over the years, understanding of the environmental behavior and fate of pollutants is still limited. With the development of cities, the release of PBDEs in old landfills will gradually increase the risk to the surrounding environment. Here we review the biological and nonbiological transformation of PBDEs and their derivatives in landfills and surrounding areas, as well as their distribution in soil, groundwater, and atmosphere. Specifically, this review aims to provide insights into the following aspects: 1) the biological (plant, animal, and microbial) and nonbiological (metal catalysis and photodegradation) conversion of PBDEs and their derivatives in landfills and surrounding areas; 2) the distribution of landfill-sourced PBDEs in the soil, groundwater, atmosphere and cross-media migration; and 3) suggestions and future research directions for the management and control of PBDEs in landfills.
Release, transformation, and risk factors of polybrominated diphenyl ethers from landfills to the surrounding environments: A review
Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants when added to various products. When these products reach their end of life, a large amount of domestic waste containing PBDEs enters the landfills. Given their weak chemical bonds, they are easily affected by physical, chemical, and biological processes. These processes result in their release and the subsequent contamination of the surrounding soil, groundwater, and atmosphere, causing harm to humans and ecosystems. However, despite the progress made in the research of PBDEs over the years, understanding of the environmental behavior and fate of pollutants is still limited. With the development of cities, the release of PBDEs in old landfills will gradually increase the risk to the surrounding environment. Here we review the biological and nonbiological transformation of PBDEs and their derivatives in landfills and surrounding areas, as well as their distribution in soil, groundwater, and atmosphere. Specifically, this review aims to provide insights into the following aspects: 1) the biological (plant, animal, and microbial) and nonbiological (metal catalysis and photodegradation) conversion of PBDEs and their derivatives in landfills and surrounding areas; 2) the distribution of landfill-sourced PBDEs in the soil, groundwater, atmosphere and cross-media migration; and 3) suggestions and future research directions for the management and control of PBDEs in landfills.
Release, transformation, and risk factors of polybrominated diphenyl ethers from landfills to the surrounding environments: A review
Yifan Zhang (author) / Beidou Xi (author) / Wenbing Tan (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Determination of polybrominated diphenyl ethers in human semen
Online Contents | 2012
|Distribution and fate of polybrominated diphenyl ethers in indoor environments of elementary schools
Wiley | 2010
|Distribution and fate of polybrominated diphenyl ethers in indoor environments of elementary schools
Online Contents | 2010
|Migration of polybrominated diphenyl ethers in biosolids-amended soil
Online Contents | 2013
|