A platform for research: civil engineering, architecture and urbanism
A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles
Battery Electric Vehicles (BEVs) play an important role in the needed transition away from fossil fuels and Internal Combustion Engine Vehicles (ICEVs). Although transport planning models and routing problem solutions exist for BEVs, the assumption that BEV drivers search for the shortest path while constraining energy consumption does not have any empirical basis. This study presents a study of actual route choice behavior of drivers from 107 Danish households participating in a large-scale experiment with BEVs and at the same time driving their ICEVs. GPS traces from 8968 BEV and 6678 ICEV routes were map matched to a detailed road network to construct observed routes, and a route choice model was specified and estimated to capture behavioral differences related to the vehicle type. The results reveal that drivers had a higher sensitivity to travel time and trip length when driving BEVs, and to route directness after receiving the BEV, regardless of vehicle type. The results suggest the need to revise the assumptions of transport planning models and routing problems for BEVs in order not to fail to predict what drivers will do by ignoring differences and similarities related to vehicle type.
A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles
Battery Electric Vehicles (BEVs) play an important role in the needed transition away from fossil fuels and Internal Combustion Engine Vehicles (ICEVs). Although transport planning models and routing problem solutions exist for BEVs, the assumption that BEV drivers search for the shortest path while constraining energy consumption does not have any empirical basis. This study presents a study of actual route choice behavior of drivers from 107 Danish households participating in a large-scale experiment with BEVs and at the same time driving their ICEVs. GPS traces from 8968 BEV and 6678 ICEV routes were map matched to a detailed road network to construct observed routes, and a route choice model was specified and estimated to capture behavioral differences related to the vehicle type. The results reveal that drivers had a higher sensitivity to travel time and trip length when driving BEVs, and to route directness after receiving the BEV, regardless of vehicle type. The results suggest the need to revise the assumptions of transport planning models and routing problems for BEVs in order not to fail to predict what drivers will do by ignoring differences and similarities related to vehicle type.
A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles
Anders F. Jensen (author) / Thomas K. Rasmussen (author) / Carlo G. Prato (author)
2020
Article (Journal)
Electronic Resource
Unknown
battery electric vehicles , internal combustion engine vehicles , route choice behavior , driver preferences , discrete choice models , driving behavior , utility maximization , direct routes , Environmental effects of industries and plants , TD194-195 , Renewable energy sources , TJ807-830 , Environmental sciences , GE1-350
Metadata by DOAJ is licensed under CC BY-SA 1.0
Perspectives on Driver Preferences for Dynamic Route Guidance Systems
British Library Online Contents | 1997
|An analysis of bicycle route choice preferences in Texas, US
Online Contents | 2009
|An analysis of bicycle route choice preferences in Texas, US
Online Contents | 2009
|A stated preferences survey for investigating route choice behaviour in Adelaide
British Library Conference Proceedings | 2004
|