A platform for research: civil engineering, architecture and urbanism
Surface Seeding of Wheat: A Sustainable Way towards Climate Resilience Agriculture
Conventional tillage (CT)-based agriculture is known to be ecologically indiscreet, economically and environmentally unsustainable, and leads to the degradation of soil and the environment in the Indo-Gangetic Plain (IGP). The surface seeding (SS) method was introduced to manage agro-ecosystems for sustaining productivity and increasing farmers’ profits, while sustaining the natural resources. Here, we conducted a systematic literature review on SS of wheat reported in the IGP, with the aim to cover the concept of SS, its impact on wheat yield, soil properties, and the environment, with the potential benefits and constraints. The major findings are: (i) an SS-based rice–wheat system improves productivity (∼10%) and profitability (20–30%),while employing a lesser amount of irrigation water (15–30%) and energy input (20–25%) compared to a conventional system; (ii) an SS-based system is more adaptive to extreme climatic conditions, reduces the carbon footprint, and increases crop production; (iii) an SS approach enhances soil health by virtue of increased soil organic carbon and improved soil aggregation, as well as soil, water, and energy conservation; (iv) SS consisting of no-tillage with substantial crop residue retention offers an alternative to crop residue burning. Strong policies/legislation are required to encourage SS of wheat, in order to limit residue burning, and provide farmers with carbon credits in exchange for carbon sequestration and reduced greenhouse gas emissions.
Surface Seeding of Wheat: A Sustainable Way towards Climate Resilience Agriculture
Conventional tillage (CT)-based agriculture is known to be ecologically indiscreet, economically and environmentally unsustainable, and leads to the degradation of soil and the environment in the Indo-Gangetic Plain (IGP). The surface seeding (SS) method was introduced to manage agro-ecosystems for sustaining productivity and increasing farmers’ profits, while sustaining the natural resources. Here, we conducted a systematic literature review on SS of wheat reported in the IGP, with the aim to cover the concept of SS, its impact on wheat yield, soil properties, and the environment, with the potential benefits and constraints. The major findings are: (i) an SS-based rice–wheat system improves productivity (∼10%) and profitability (20–30%),while employing a lesser amount of irrigation water (15–30%) and energy input (20–25%) compared to a conventional system; (ii) an SS-based system is more adaptive to extreme climatic conditions, reduces the carbon footprint, and increases crop production; (iii) an SS approach enhances soil health by virtue of increased soil organic carbon and improved soil aggregation, as well as soil, water, and energy conservation; (iv) SS consisting of no-tillage with substantial crop residue retention offers an alternative to crop residue burning. Strong policies/legislation are required to encourage SS of wheat, in order to limit residue burning, and provide farmers with carbon credits in exchange for carbon sequestration and reduced greenhouse gas emissions.
Surface Seeding of Wheat: A Sustainable Way towards Climate Resilience Agriculture
Satish Kumar Singh (author) / Abhik Patra (author) / Ramesh Chand (author) / Hanuman Singh Jatav (author) / Yang Luo (author) / Vishnu D. Rajput (author) / Shafaque Sehar (author) / Sanjay Kumar Attar (author) / Mudasser Ahmed Khan (author) / Surendra Singh Jatav (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review
DOAJ | 2020
|Towards Climate Neutrality via Sustainable Agriculture in Soil Management
Online Contents | 2022
|Climate Resilience and Sustainable Cities
Springer Verlag | 2023
|