A platform for research: civil engineering, architecture and urbanism
Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China
In 2017, Shenzhen replaced all its buses with battery e-buses (electric buses) and has become the first all-e-bus city in the world. Systematic planning of the supporting charging infrastructure for the electrified bus transportation system is required. Considering the number of city e-buses and the land scarcity, large-scale bus charging stations were preferred and adopted by the city. Compared with other EVs (electric vehicles), e-buses have operational tasks and different charging behavior. Since large-scale electricity-consuming stations will result in an intense burden on the power grid, it is necessary to consider both the transportation network and the power grid when planning the charging infrastructure. A cost-minimization model to jointly determine the deployment of bus charging stations and a grid connection scheme was put forward, which is essentially a three-fold assignment model. The problem was formulated as a mixed-integer second-order cone programming model, and a “No R” algorithm was proposed to improve the computational speed further. Computational studies, including a case study of Shenzhen, were implemented and the impacts of EV technology advancements on the cost and the infrastructure layout were also investigated.
Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China
In 2017, Shenzhen replaced all its buses with battery e-buses (electric buses) and has become the first all-e-bus city in the world. Systematic planning of the supporting charging infrastructure for the electrified bus transportation system is required. Considering the number of city e-buses and the land scarcity, large-scale bus charging stations were preferred and adopted by the city. Compared with other EVs (electric vehicles), e-buses have operational tasks and different charging behavior. Since large-scale electricity-consuming stations will result in an intense burden on the power grid, it is necessary to consider both the transportation network and the power grid when planning the charging infrastructure. A cost-minimization model to jointly determine the deployment of bus charging stations and a grid connection scheme was put forward, which is essentially a three-fold assignment model. The problem was formulated as a mixed-integer second-order cone programming model, and a “No R” algorithm was proposed to improve the computational speed further. Computational studies, including a case study of Shenzhen, were implemented and the impacts of EV technology advancements on the cost and the infrastructure layout were also investigated.
Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China
Yuping Lin (author) / Kai Zhang (author) / Zuo-Jun Max Shen (author) / Lixin Miao (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
On transport strategy during motorization in China's cities - Shenzhen case study
British Library Conference Proceedings | 1998
|