A platform for research: civil engineering, architecture and urbanism
Investigation on the Gas Drainage Effectiveness from Coal Seams by Parallel Boreholes
Gas drainage is an important technology to prevent coal and gas outburst, and the drained gas is a kind of clean energy. The gas pressure can characterize gas drainage effectiveness. In this paper, we investigated the effectiveness of gas drainage by gas pressure. Determined by the space shape of the gas flow field, the gas flow state surrounding the drainage boreholes is radial flow. According to the basic equations of radial flow, discrete equations were achieved by the implicit difference scheme, and then we obtained the gas pressure surrounding the drainage boreholes. Results showed that the midpoint between two holes presents the highest gas pressure, and gas pressure declined from the midpoint of two boreholes to both sides. The midpoint gas pressure of the two holes reflects gas drainage effectiveness in a certain degree. Gas pressure declined with segmented characteristics in the first period decline curve in the form of a cubic curve, and the second period decline curve in the form of a straight line. When the drainage pressure reaches a certain value, the decline rate of gas pressure had little relationship with the drainage negative pressure, mainly influenced by the permeability coefficient. To improve the drainage effectiveness, anti-reflection measures are feasible, instead of increasing the drainage negative pressure. Moreover, the conclusion was verified by field data.
Investigation on the Gas Drainage Effectiveness from Coal Seams by Parallel Boreholes
Gas drainage is an important technology to prevent coal and gas outburst, and the drained gas is a kind of clean energy. The gas pressure can characterize gas drainage effectiveness. In this paper, we investigated the effectiveness of gas drainage by gas pressure. Determined by the space shape of the gas flow field, the gas flow state surrounding the drainage boreholes is radial flow. According to the basic equations of radial flow, discrete equations were achieved by the implicit difference scheme, and then we obtained the gas pressure surrounding the drainage boreholes. Results showed that the midpoint between two holes presents the highest gas pressure, and gas pressure declined from the midpoint of two boreholes to both sides. The midpoint gas pressure of the two holes reflects gas drainage effectiveness in a certain degree. Gas pressure declined with segmented characteristics in the first period decline curve in the form of a cubic curve, and the second period decline curve in the form of a straight line. When the drainage pressure reaches a certain value, the decline rate of gas pressure had little relationship with the drainage negative pressure, mainly influenced by the permeability coefficient. To improve the drainage effectiveness, anti-reflection measures are feasible, instead of increasing the drainage negative pressure. Moreover, the conclusion was verified by field data.
Investigation on the Gas Drainage Effectiveness from Coal Seams by Parallel Boreholes
Chuantian Li (author) / Yingfeng Sun (author) / Shiyue Wu (author) / Xiaoyuan Sun (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Study on key grouting blocking parameters of gas drainage boreholes in soft coal seams
Elsevier | 2024
|Coal strength evaluation from boreholes
Online Contents | 1982
|