A platform for research: civil engineering, architecture and urbanism
The Link between Permeable Interlocking Concrete Pavement (PICP) Design and Nutrient Removal
The construction of ‘hard’ impermeable surfaces in urban areas results in the increased flow of stormwater runoff and its associated pollutants into downstream receiving waters. Permeable Pavement Systems (PPS) can help mitigate this. The most common type of PPS in South Africa is permeable interlocking concrete pavement (PICP), but there is currently insufficient information available on the relative treatment performance of different PICP designs. This paper describes an investigation into the performance of ten different PICP systems constructed in the Civil Engineering Laboratory at the University of Cape Town for the treatment of various nutrients commonly found in stormwater runoff. It was found that removal efficiencies ranged from 27.5% to 78.7% for ammonia-nitrogen and from −37% to 11% for orthophosphate-phosphorus; whilst 4% to 20.2% more nitrite-nitrogen and 160% to 2580% more nitrate-nitrogen were simultaneously added. The presence of a geotextile resulted in higher ammonia-nitrogen removal efficiencies but also higher nitrate-nitrogen addition than those cells without—with small differences between various types. The cell with a permanently wet ‘sump’ had the highest nitrate-nitrogen addition of all. Lower pH results in higher nitrate-nitrogen concentrations, whilst the electrical conductivity strongly depends on the length of the periods between rainfall ‘seasons’, decreasing rapidly during wet periods but increasing during dry periods. Paver type also had a minor impact on nutrient removal.
The Link between Permeable Interlocking Concrete Pavement (PICP) Design and Nutrient Removal
The construction of ‘hard’ impermeable surfaces in urban areas results in the increased flow of stormwater runoff and its associated pollutants into downstream receiving waters. Permeable Pavement Systems (PPS) can help mitigate this. The most common type of PPS in South Africa is permeable interlocking concrete pavement (PICP), but there is currently insufficient information available on the relative treatment performance of different PICP designs. This paper describes an investigation into the performance of ten different PICP systems constructed in the Civil Engineering Laboratory at the University of Cape Town for the treatment of various nutrients commonly found in stormwater runoff. It was found that removal efficiencies ranged from 27.5% to 78.7% for ammonia-nitrogen and from −37% to 11% for orthophosphate-phosphorus; whilst 4% to 20.2% more nitrite-nitrogen and 160% to 2580% more nitrate-nitrogen were simultaneously added. The presence of a geotextile resulted in higher ammonia-nitrogen removal efficiencies but also higher nitrate-nitrogen addition than those cells without—with small differences between various types. The cell with a permanently wet ‘sump’ had the highest nitrate-nitrogen addition of all. Lower pH results in higher nitrate-nitrogen concentrations, whilst the electrical conductivity strongly depends on the length of the periods between rainfall ‘seasons’, decreasing rapidly during wet periods but increasing during dry periods. Paver type also had a minor impact on nutrient removal.
The Link between Permeable Interlocking Concrete Pavement (PICP) Design and Nutrient Removal
Bodi Kimberly Liu (author) / Neil P. Armitage (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
PERMEABLE INTERLOCKING CONCRETE PAVEMENT MAINTENANCE UPDATE
British Library Conference Proceedings | 2020
|Hydraulic Characterization and Design of Permeable Interlocking Concrete Pavement
British Library Conference Proceedings | 2015
|