A platform for research: civil engineering, architecture and urbanism
Multi-Point Optical Flow Cable Force Measurement Method Based on Euler Motion Magnification
This study introduces a multi-point optical flow cable force measurement method based on Euler motion amplification to address challenges in accurately measuring cable displacement under small displacement conditions and mitigating background interference in complex environments. The proposed method combines phase-based magnification with an optical flow method to enhance small displacement features and improve SNR (signal-to-noise ratio) in cable displacement tracking. By leveraging magnified motion data and integrating auxiliary feature points, the approach compensates for equipment-induced vibrations and background noise, allowing for precise cable displacement measurement and the identification of vibration modes. The methodology was validated using a scaled model of a cable net structure. The results demonstrate the method’s effectiveness, achieving a significantly higher SNR (e.g., from 7.5 dB to 22.24 dB) compared to traditional optical flow techniques. Vibration frequency errors were reduced from 6.2% to 1.5%, and cable force errors decreased from 11.38% to 3.13%. The multi-point optical flow cable force measurement method based on Euler motion magnification provides a practical and reliable solution for non-contact cable force measurement, offering potential applications in structural health monitoring and the maintenance of bridges and high-altitude structures.
Multi-Point Optical Flow Cable Force Measurement Method Based on Euler Motion Magnification
This study introduces a multi-point optical flow cable force measurement method based on Euler motion amplification to address challenges in accurately measuring cable displacement under small displacement conditions and mitigating background interference in complex environments. The proposed method combines phase-based magnification with an optical flow method to enhance small displacement features and improve SNR (signal-to-noise ratio) in cable displacement tracking. By leveraging magnified motion data and integrating auxiliary feature points, the approach compensates for equipment-induced vibrations and background noise, allowing for precise cable displacement measurement and the identification of vibration modes. The methodology was validated using a scaled model of a cable net structure. The results demonstrate the method’s effectiveness, achieving a significantly higher SNR (e.g., from 7.5 dB to 22.24 dB) compared to traditional optical flow techniques. Vibration frequency errors were reduced from 6.2% to 1.5%, and cable force errors decreased from 11.38% to 3.13%. The multi-point optical flow cable force measurement method based on Euler motion magnification provides a practical and reliable solution for non-contact cable force measurement, offering potential applications in structural health monitoring and the maintenance of bridges and high-altitude structures.
Multi-Point Optical Flow Cable Force Measurement Method Based on Euler Motion Magnification
Jinzhi Wu (author) / Bingyi Yan (author) / Yu Xue (author) / Jie Qin (author) / Deqing You (author) / Guojun Sun (author)
2025
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Online Contents | 2018
|